

Density-Based Shape Descriptors and Similarity Learning for 3D Object Retrieval

Ceyhun Burak Akgül^{1,2}

¹Boğaziçi University Electrical and Electronics Engineering Dept. Istanbul, Turkey

²ENST Signal and Image Processing Dept. (ENST/TSI) Paris, France

> Thesis Advisers Bülent Sankur (Boğaziçi University) Francis Schmitt (ENST/TSI)

Information Retrieval

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

・ロト ・ 日 ・ ・ ヨ ト・・

2 of 108

4

Information Retrieval

In text-based retrieval:

- Query is a set of *words*.
- Search results are typically based on occurrence.

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

・ロト ・ 日 ・ ・ ヨ ト ・ ・

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

• Image/Photo

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video
- 3D Data

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video
- 3D Data

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video
- 3D Data

3 D

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video
- 3D Data

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video
- 3D Data

Information Retrieval for Multimedia

Question

What if we want to look for multimedia data?

- Image/Photo
- Music
- Video
- 3D Data

Information Retrieval for Multimedia

For text-based retrieval of multimedia data:

• Query should be given a textual description:

Image: A math

Information Retrieval for Multimedia

= "diving" + "underwater" + "coral" + ...

Image: A matrix

For text-based retrieval of multimedia data:

• Query should be given a textual description:

Information Retrieval for Multimedia

= "amphora with two handles"

For text-based retrieval of multimedia data:

• Query should be given a textual description:

Information Retrieval for Multimedia

For text-based retrieval of multimedia data:

• Query should be given a textual description:

(D) (A) (A)

Information Retrieval for Multimedia

For text-based retrieval of multimedia data:

• Query should be given a textual description: not always possible!

(D) (A) (B)

Information Retrieval for Multimedia

For text-based retrieval of multimedia data:

- Query should be given a textual description: not always possible!
- Database items should be annotated beforehand: extremely laborious!

(D) (A) (B)

Content-Based Retrieval (CBR)

In CBR

- No textual description
- No need for database annotation

Content-Based Retrieval (CBR)

In CBR

- No textual description
- No need for database annotation

Major Issues

How to describe the multimedia content? Content Description Problem

e How to evaluate the relevance between entities? Similarity Problem

(D) (A) (A)

Scope and Contributions

- Content Description for 3D Objects
- ② Similarity Learning for CBR

< 17 ×

Scope and Contributions

- Content Description for 3D Objects Density-Based Shape Description Framework
- ② Similarity Learning for CBR

< 17 ×

Scope and Contributions

- Content Description for 3D Objects Density-Based Shape Description Framework
- Similarity Learning for CBR
 Similarity Score Fusion by Ranking Risk Minimization

< 17 ×

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Image: A matrix

• E >

3D Object Retrieval

Generic Retrieval Algorithm

Density-Based Shape Descriptors and Similarity Learning

æ

3D Object Retrieval

Generic Retrieval Algorithm

- A query object Q
- Database objects $O_t, t = 1, \ldots, T$
- Database descriptors f_t (one for each O_t)

3D Object Retrieval

Generic Retrieval Algorithm

- A query object Q
- Database objects O_t, t = 1,..., T
- Database descriptors \mathbf{f}_t (one for each O_t)
- **()** Compute the descriptor \mathbf{f}_q for Q

3D Object Retrieval

Generic Retrieval Algorithm

- A query object Q
- Database objects O_t, t = 1, ..., T
- Database descriptors \mathbf{f}_t (one for each O_t)
- **()** Compute the descriptor \mathbf{f}_q for Q
- 2 For each t, calculate a similarity score between Q and O_t

$$sim_t = sim(Q, O_t) = \varphi(\mathbf{f}_q, \mathbf{f}_t)$$

イロト イポト イヨト イヨト

3D Object Retrieval

Generic Retrieval Algorithm

- A query object Q
- Database objects O_t, t = 1, ..., T
- Database descriptors \mathbf{f}_t (one for each O_t)
- **(**) Compute the descriptor \mathbf{f}_q for Q
- 2 For each t, calculate a similarity score between Q and O_t

$$sim_t = sim(Q, O_t) = \varphi(\mathbf{f}_q, \mathbf{f}_t)$$

Oisplay the database objects in descending order of similarities

イロト イポト イヨト イヨト

3D Object Retrieval: Example

æ

イロト イヨト イヨト イヨト

3D Object Retrieval: Example

Density-Based Shape Descriptors and Similarity Learning

3D Object Retrieval: Objectives

What do we aim at?

More similar (or **relevant**) objects \rightarrow Beginning of the list

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

11 of 108

3D Object Retrieval: Objectives

What do we aim at?

More similar (or relevant) objects \rightarrow Beginning of the list

How do we measure the performance?

- Precision-Recall curve
- Nearest-Neighbor Score
- Discounted Cumulative Gain

3D Object Retrieval: Performance Measures

Definition: Precision and Recall

 $Precision = \frac{\#(\text{Relevant items in the first } K \text{ matches})}{K}$ $Recall = \frac{\#(\text{Relevant items in the first } K \text{ matches})}{\text{Size of the query class}}$

Density-Based Shape Descriptors and Similarity Learning
3D Object Retrieval: Performance Measures

Nearest-Neighbor Score (NN)

- Percentage of the first correct matches
- Indicative of the classification performance
- NN ∈ [0, 100] (%)

Discounted Cumulative Gain (DCG)

- Considers the full list of retrieval results
- A user is less likely to consider elements near the end of the list.
- $\rightarrow\,$ Correct results near the front are weighted more.
 - DCG \in [0, 100] (%)

Image: A math a math

3D Object Databases

Definition: Triangular Mesh

A **triangular mesh** is a union of triangles which approximates a continuous surface in 3D.

Density-Based Shape Descriptors and Similarity Learning

3D Object Databases

- Princeton Shape Benchmark (PSB)
- Sculpteur (SCU)
- SHREC Watertight (SHREC-W)
- O Purdue Engineering Shape Benchmark

Image: A matrix

3D Object Databases: PSB

Princeton Shape Benchmark (PSB)

- Wide range of shape classes: flower, chair, human, spacecraft, piano, dog, ...
- 1814 objects in 161 classes:

Training (907 objects, 90 classes) and Test (907 objects, 92 classes)

3D Object Databases: SCU

Sculpteur (SCU)

- Archaelogically valuable museum objects: amphora, vase, pavement, statue, relievo, ...
- 513 objects in 53 classes

Image: A matrix

3D Object Databases: SHREC-W

SHREC'07 Watertight (SHREC-W)

- A limited range of shape classes:
 cup, chair, bird, human, hand, spiral, ...
- Classification induced by topological equivalences
- 400 objects in 20 classes

3D Object Databases: ESB

Purdue Engineering Shape Benchmark (ESB)

- Engineering parts (CAD):
 bearing, gear, handle, elbow, housing, ...
- 815 objects in 45 classes

< 🗇 🕨

3D Object Databases: Comparison

Properties

	PSB	SCU	SHREC-W	ESB
#(Classes)	92	53	20	45
Resolution	Low	High	High	Medium
Watertight?	No	Yes	Yes	Yes
Smooth?	No	Yes	Yes	No

Remark

- Different 3D application domains
- Diverse semantics and shape properties

3D Shape Descriptors

Definition: Shape Descriptor

A shape descriptor is a vector or graph-like data structure, which encodes geometrical and/or topological shape characteristics.

Density-Based Shape Descriptors and Similarity Learning

Image: A matrix

3D Shape Descriptors: Properties

A "good" descriptor is

Effective

- 2 Efficient
- I Flexible
- O Robust
- Invariant

Image: A matrix

• = •

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- I Flexible
- O Robust
- Invariant

- Captures essential shape characteristics
- Eliminates irrelevant details
- \rightarrow High retrieval performance

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- Iexible
- O Robust
- Invariant

- Fast to compute
- Low storage cost

< D> < D> <

• = •

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- Flexible
- O Robust
- Invariant

Can be computed for different shape representations:

- Triangular mesh
- 3D point cloud
- Parametric surface
- Implicit surface
- Voxel ...

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- I Flexible
- O Robust
- Invariant

Insensitive to:

- Mesh resolution
- Mesh degeneracies
- Small shape variation

Image: A matrix

• = •

Noise

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- Iexible
- O Robust
- Invariant

Shape is what remains after the effect of **rigid motions+scaling** are removed.

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- I Flexible
- O Robust
- Invariant

Translation

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- I Flexible
- O Robust
- Invariant

Pose Change (Rotation and Reflection)

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- I Flexible
- O Robust
- Invariant

Isotropic Rescaling

3D Shape Descriptors: Properties

A "good" descriptor is

- Effective
- 2 Efficient
- Iexible
- O Robust
- Invariant

BUT without loss of shape information!

3D Shape Descriptors: A Taxonomy

- Histogram-Based
- Iransform-Based
- Graph-Based
- "2D Image"-Based
- Others

< D> < D> <

• E >

3D Shape Descriptors: A Taxonomy

Histogram-Based

- 2 Transform-Based
- Graph-Based
- "2D Image"-Based
- Others

- Cord and Angle Histograms
- Shape Distributions
- Extended Gaussian Images

- 3D Hough Transform
- Shape Spectrum

3D Shape Descriptors: A Taxonomy

- Histogram-Based
- O Transform-Based
- Graph-Based
- "2D Image"-Based
- Others

Functions on the 3D grid

- 3D Fourier Transform
- Radial Cosine Transform

Functions on the unit sphere

• Angular Radial Transform

- Spherical Harmonics
- Spherical Wavelets

3D Shape Descriptors: A Taxonomy

- Histogram-Based
- Iransform-Based
- Graph-Based
- "2D Image"-Based
- Others

Multiresolution Reeb Graphs

Skeletal Graphs

3D Shape Descriptors: A Taxonomy

- Histogram-Based
- Iransform-Based
- Graph-Based
- "2D Image"-Based
- Others

Multiple views or projections

- Silhouette Descriptor
- Depth Buffer Images
- Lightfield Descriptor

(D) (A) (A)

3D Shape Descriptors: A Taxonomy

- Histogram-Based
- Iransform-Based
- Graph-Based
- "2D Image"-Based
- Others

- Spin Images
- 3D Zernike Moments
- Reflective Symmetry Descriptors

3D Shape Descriptors: A Taxonomy

Histogram-Based

- 2 Transform-Based
- Graph-Based
- "2D Image"-Based
- Others

- Cord and Angle Histograms
- Shape Distributions
- Extended Gaussian Images

- 3D Hough Transform
- Shape Spectrum

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Image: A matrix

• = •

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Density-Based Framework (DBF)

Definition: Density-Based Shape Descriptor

A density-based descriptor of a 3D shape is the probability density function (pdf) of a local surface feature.

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Density-Based Framework (DBF)

Definition: Density-Based Shape Descriptor

A density-based descriptor of a 3D shape is the probability density function (pdf) of a local surface feature.

The Premise

Similar shapes induce similar feature distributions.

 \Diamond Similarity between two shapes \leftrightarrow Variation between feature pdfs

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Density-Based Framework (DBF)

Earlier Approaches

Shape Distributions [Osada et al., 2002] Cord and Angle Histograms [Paquet and Rioux, 1997] Extended Gaussian Images [Horn, 1984; Kang and Ikeuchi, 1993] 3D Hough Transform [Zaharia and Prêteux, 2002]

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Density-Based Framework (DBF)

Earlier Approaches

Shape Distributions [Osada et al., 2002]
Cord and Angle Histograms [Paquet and Rioux, 1997]
Extended Gaussian Images [Horn, 1984; Kang and Ikeuchi, 1993]
3D Hough Transform [Zaharia and Prêteux, 2002]

Key Aspects of DBF

- Scalar vs. Multivariate features
 - \rightarrow Exhaustive local characterization

< A

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Density-Based Framework (DBF)

Earlier Approaches

Shape Distributions [Osada et al., 2002]
Cord and Angle Histograms [Paquet and Rioux, 1997]
Extended Gaussian Images [Horn, 1984; Kang and Ikeuchi, 1993]
3D Hough Transform [Zaharia and Prêteux, 2002]

Key Aspects of DBF

- Scalar vs. Multivariate features
 - \rightarrow Exhaustive local characterization
- Histogram vs. Kernel Density Estimation (KDE)
 - More flexible
 - Smoother estimates
 - Fast thanks to Fast Gauss Transform (FGT)

< 17 b

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Density-Based Framework (DBF)

Earlier Approaches

Shape Distributions [Osada et al., 2002]
Cord and Angle Histograms [Paquet and Rioux, 1997]
Extended Gaussian Images [Horn, 1984; Kang and Ikeuchi, 1993]
3D Hough Transform [Zaharia and Prêteux, 2002]

Key Aspects of DBF

- Scalar vs. Multivariate features
 - \rightarrow Exhaustive local characterization
- Histogram vs. Kernel Density Estimation (KDE)
 - More flexible
 - Smoother estimates
 - Fast thanks to Fast Gauss Transform (FGT)
- A unifying framework \rightarrow Family of descriptors

< D > < () >

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh \mathcal{M}

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh \mathcal{M}

Feature Design

- Choose a local surface feature $S \in \mathcal{R}_S$
- Obtain a set of feature observations {s_k}^K_{k=1} using the mesh points

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh \mathcal{M}

Feature Design

- Choose a local surface feature $S \in \mathcal{R}_S$
- Obtain a set of feature observations {s_k}^K_{k=1} using the mesh points

O Target Selection

• Determine the **pdf evaluation points** for the feature $S \rightarrow \text{Targets:} \ \overline{\mathcal{R}}_{S} = \{t_{n} \in \mathcal{R}_{S}\}_{n=1}^{N}$

(D) (A) (A)
Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh \mathcal{M}

Feature Design

- Choose a local surface feature $S \in \mathcal{R}_S$
- Obtain a set of feature observations {s_k}^K_{k=1} using the mesh points

2 Target Selection

• Determine the **pdf evaluation points** for the feature $S \rightarrow \text{Targets:} \ \overline{\mathcal{R}}_{S} = \{t_n \in \mathcal{R}_{S}\}_{n=1}^{N}$

Omputation

• Using the observations, estimate the feature pdf at designated targets

$$\mathbf{f}_{S|O} = [f_S(t_1|O), \dots, f_S(t_N|O)] \in \mathbb{R}^N$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Outline

1 3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features

Once upon a time there was a point lying on a 3D surface...

(日) (部) (注) (注)

Density-Based Shape Descriptors and Similarity Learning

æ

DBF(1): Local Surface Features

Once upon a time there was a point lying on a 3D surface..

Zero-order First-order Second-order

Density-Based Shape Descriptors and Similarity Learning

Feature Design

Target Selection

Additional Tools

Descriptor Computation

Comparison Experiments

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features

Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

Radial Distance $R \in [0, r_{max}]$ Scalar Rotation-invariant Zero-order

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features

Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

Radial Direction $\hat{\mathbf{R}} \triangleq (\hat{R}_x, \hat{R}_y, \hat{R}_z) \in S^2$ Unit-norm vector Scale-invariant **Zero-order**

・ロト ・日下・・ キャト・・

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features

Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

Normal Direction $\hat{\mathbf{N}} \triangleq (\hat{N}_x, \hat{N}_y, \hat{N}_z) \in S^2$ Unit-norm vector Scale-invariant **First-order**

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

T-plane Distance $D = R \left| \left\langle \hat{\mathbf{R}}, \hat{\mathbf{N}} \right\rangle \right| \in [0, d_{max}]$ Scalar Rotation-invariant **First-order**

() < </p>

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

Shape Index

$$SI = \frac{1}{2} - \left(\frac{2}{\pi}\right) \arctan\left(\frac{\kappa_1 + \kappa_2}{\kappa_1 - \kappa_2}\right)$$

 $SI \in [0, 1]$
Scalar
Rotation and Scale-invariant
Second-order

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

Shape Index $SI = \frac{1}{2} - (\frac{2}{\pi}) \arctan\left(\frac{\kappa_1 + \kappa_2}{\kappa_1 - \kappa_2}\right)$ $SI \in [0, 1]$ Scalar Rotation and Scale-invariant Second-order

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

Alignment $A \triangleq \left| \left\langle \hat{\mathbf{R}}, \hat{\mathbf{N}} \right\rangle \right| \in [0, 1]$ Scalar

Rotation and Scale-invariant **First-order**

() < </p>

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Surface Features

Radial distance Radial direction Normal direction T-plane distance Shape index Alignment Torque

$\begin{array}{l} \textbf{Torque} \\ \textbf{C} \triangleq \boldsymbol{\hat{\textbf{R}}} \times \boldsymbol{\hat{\textbf{N}}} \in \mathcal{B}^2 \end{array}$

Vector Scale-invariant **First-order**

() < </p>

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

Remark

Join the features \rightarrow Obtain a multivariate local characterization

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

Radial $(R, \hat{\mathbf{R}})$ parametrizes the surface point **Zero-order**

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

T-plane (D, \hat{N}) parametrizes the tangent plane **First-order**

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

"Sec-Order" (*R*, *A*, *SI*) *categorical surface information* **Second-order**

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

Full $(R, \hat{\mathbf{R}}, \hat{\mathbf{N}}, SI)$ characterization up to second-order

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

Even "More" Multivariate $(R, \hat{\mathbf{R}}, D, \hat{\mathbf{N}}, SI, A, \mathbf{C})$

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Local Characterization of a 3D Surface

Density-Based Shape Descriptors and Similarity Learning

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Feature Calculation

Features are calculated at mesh points. Which ones?

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Feature Calculation

Features are calculated at mesh points. Which ones?

Vertices

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Feature Calculation

Features are calculated at mesh points. Which ones?

- Vertices
- Triangle centers

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Feature Calculation

Features are calculated at mesh points. Which ones?

- Vertices
- Triangle centers
- By averaging over the triangle

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Feature Calculation

Features are calculated at mesh points. Which ones?

- Vertices
- Triangle centers
- By averaging over the triangle

・ロト ・ 同ト ・ ヨト ・ ヨト

Points given by Simpson's approximation to the averaging integral

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Effect of Feature Calculation

DCG for the Kaular (Λ, \mathbf{K}) -Descriptor			
	Databases		
Feature Calculation	PSB Training	SCU	
Vertex	56.0	71.3	
Centroid	55.6	71.2	
Simpson	57.0	71.3	

DCC for the Padial (P, \hat{P}) Descriptor

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(1): Effect of Feature Calculation

DCG for the Radial (Λ, Λ) -Descriptor			
	Databases		
Feature Calculation	PSB Training	SCU	
Vertex	56.0	71.3	
Centroid	55.6	71.2	
Simpson	57.0	71.3	

DCC for the Dadial (D, \hat{D}) Decertation

Facts

• Low mesh resolution (PSB)

 \rightarrow Simpson averaging has a positive effect

- High mesh resolution (SCU)
 - \rightarrow All schemes are performance-wise equivalent

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

Reminder

Targets ↔ Pdf evaluation points

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

36 of 108

<ロ> (日) (日) (日) (日) (日)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

• Scalar $S \in I = [a, b] \in \mathbb{R}$

Radial Distance, T-plane Distance, Alignment

O Uniform Sampling (S1)

2 Equal-probability (non-uniform) Sampling (S2)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

• Scalar $S \in I = [a, b] \in \mathbb{R}$

Radial Distance, T-plane Distance, Alignment

O Uniform Sampling (S1)

- 2 Equal-probability (non-uniform) Sampling (S2)
- Unit-norm vector $S \in S^2$

Radial Direction, Normal Direction

- Octahedron subdivision (V1)
- Sampling by spherical coordinates (V2)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

• Scalar $S \in I = [a, b] \in \mathbb{R}$

Radial Distance, T-plane Distance, Alignment

O Uniform Sampling (S1)

- 2 Equal-probability (non-uniform) Sampling (S2)
- Unit-norm vector $S \in S^2$

Radial Direction, Normal Direction

- **1** Octahedron subdivision (V1)
- Sampling by spherical coordinates (V2)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

• Scalar $S \in I = [a, b] \in \mathbb{R}$

Radial Distance, T-plane Distance, Alignment

O Uniform Sampling (S1)

- 2 Equal-probability (non-uniform) Sampling (S2)
- Unit-norm vector $S \in S^2$

Radial Direction, Normal Direction

- Octahedron subdivision (V1)
- Sampling by spherical coordinates (V2)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

Sampling the Unit-Sphere

Octahedron subdivision

Spherical coordinates

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Target Selection

• Scalar $S \in I = [a, b] \in \mathbb{R}$

Radial Distance, T-plane Distance, Alignment

O Uniform Sampling (S1)

- 2 Equal-probability (non-uniform) Sampling (S2)
- Unit-norm vector $S \in S^2$

Radial Direction, Normal Direction

- Octahedron subdivision (V1)
- Sampling by spherical coordinates (V2)
- General multivariate $S = (S_1, S_2) \in \mathcal{R}_{S_1} \times \mathcal{R}_{S_2}$

Take the Cartesian product of individual target sets

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Effect of Target Selection

DCG Performance of Sampling Schemes

Sampling	Radial	T-plane
S1 × V1	57.0	59.8
S1 × V2	56.8	60.5
S2 × V1	56.0	59.5
S2 × V 2	56.3	60.1

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(2): Effect of Target Selection

DCG Performance of Sampling Schemes

Sampling	Radial	T-plane
S1 × V1	57.0	59.8
S1 × V2	56.8	60.5
S2 × V1	56.0	59.5
S2×V2	56.3	60.1

Fact

All target selection schemes lead to equivalent performances... provided that the non-uniformity of targets is taken into account at similarity computation.
Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Kernel Density Estimation (KDE)

$$f_{S}(t_{n}) = \sum_{k=1}^{K} w_{k} |H_{k}|^{-1} \mathcal{K} \left(H_{k}^{-1}(t_{n} - s_{k}) \right)$$

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Kernel Density Estimation (KDE)

$$f_{S}(t_{n}) = \sum_{k=1}^{K} w_{k} |H_{k}|^{-1} \mathcal{K} \left(H_{k}^{-1}(t_{n} - s_{k}) \right)$$

• Sources (or observations) $\{s_k\}_{k=1}^{K}$

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Kernel Density Estimation (KDE)

$$f_{\mathcal{S}}(t_n) = \sum_{k=1}^{K} w_k |H_k|^{-1} \mathcal{K} \left(H_k^{-1} (\boldsymbol{t_n} - \boldsymbol{s_k}) \right)$$

- Sources (or observations) $\{s_k\}_{k=1}^{K}$
- Targets $\{t_n\}_{n=1}^N$

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Kernel Density Estimation (KDE)

$$f_{S}(t_{n}) = \sum_{k=1}^{K} \mathbf{w}_{k} |H_{k}|^{-1} \mathcal{K} (H_{k}^{-1}(t_{n} - s_{k}))$$

- Sources (or observations) $\{s_k\}_{k=1}^{K}$
- Targets $\{t_n\}_{n=1}^N$
- Weights $\{w_k\}_{k=1}^K$ set to relative triangular areas $\sum_k w_k = 1$

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Kernel Density Estimation (KDE)

$$f_{S}(t_{n}) = \sum_{k=1}^{K} w_{k} |H_{k}|^{-1} \mathcal{K} (H_{k}^{-1}(t_{n} - s_{k}))$$

- Sources (or observations) $\{s_k\}_{k=1}^{K}$
- Targets $\{t_n\}_{n=1}^N$
- Weights $\{w_k\}_{k=1}^K$ set to relative triangular areas $\sum_k w_k = 1$
- Kernel *K* set to Gaussian

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Kernel Density Estimation (KDE)

$$f_{\mathcal{S}}(t_n) = \sum_{k=1}^{K} w_k |\boldsymbol{H}_{\boldsymbol{k}}|^{-1} \mathcal{K} \left(\boldsymbol{H}_{\boldsymbol{k}}^{-1}(t_n - s_k) \right)$$

- Sources (or observations) $\{s_k\}_{k=1}^{K}$
- Targets $\{t_n\}_{n=1}^N$
- Weights $\{w_k\}_{k=1}^K$ set to relative triangular areas $\sum_k w_k = 1$
- Kernel \mathcal{K} set to Gaussian
- Bandwidth parameter matrices $\{H_k\}_{k=1}^{K}$

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Illustration of KDE

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

40 of 108

イロト イヨト イヨト イヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Illustration of KDE

KDE places a kernel around each source...

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Illustration of KDE

... and interpolates the pdf in the feature space.

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Illustration of KDE

Pdf values at targets become the descriptor vector.

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Computational Complexity of KDE

$$f_{S}(t_{n}) = \sum_{k=1}^{K} w_{k} |H_{k}|^{-1} \mathcal{K} \left(H_{k}^{-1}(t_{n} - s_{k}) \right)$$

• Direct Evaluation $\rightarrow O(KN)$

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Computational Complexity of KDE

$$f_{S}(t_{n}) = \sum_{k=1}^{K} w_{k} |H_{k}|^{-1} \mathcal{K} (H_{k}^{-1}(t_{n} - s_{k}))$$

- Direct Evaluation $\rightarrow O(KN)$
- When the kernel K is Gaussian $\rightarrow O(K + N)$ Fast Gauss Transform (FGT) [Greengard and Strain, 1991; Yang et al., 2003]

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Remark

The bandwidth parameter controls the smoothing behavior of KDE: Larger bandwidth \rightarrow Smoother estimate

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Remark

The bandwidth parameter controls the smoothing behavior of KDE: Larger bandwidth \rightarrow Smoother estimate

- $\bullet~$ Large bandwidth $\rightarrow~$ Small descriptor variation
 - Good when we want to compare similar shapes
 - Descriptors might fail to be sufficiently discriminative

< ロト (同) (三) (三)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Remark

The bandwidth parameter controls the smoothing behavior of KDE: Larger bandwidth \rightarrow Smoother estimate

- $\bullet~$ Large bandwidth $\rightarrow~$ Small descriptor variation
 - Good when we want to compare similar shapes
 - Descriptors might fail to be sufficiently discriminative
- \bullet Small bandwidth \rightarrow Large descriptor variation
 - · Good when we want to discriminate different shapes
 - Pdf estimate might overfit the observations

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Robustness against Low Mesh Resolution

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Robustness against Low Mesh Resolution

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Robustness against Pose Deviations

Cylinder

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Robustness against Pose Deviations

A D > A D >

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Fact

Variation can be rendered negligible by increasing the bandwidth.

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Fact

Variation can be rendered negligible by increasing the bandwidth.

Question

Should we increase the bandwidth indefinitely?

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Fact

Variation can be rendered negligible by increasing the bandwidth.

Question

Should we increase the bandwidth indefinitely?

Remark

In retrieval, we want:

- Small variation between similar shapes,
- Large variation between different shapes!

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Fact

Variation can be rendered negligible by increasing the bandwidth.

Question

Should we increase the bandwidth indefinitely?

Remark

In retrieval, we want:

- Small variation between similar shapes,
- Large variation between different shapes!

Answer

Setting the bandwidth is a matter of compromise between descriptor **smoothness** vs. **discriminativeness**.

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Bandwidth Selection in KDE

$$f_{\mathcal{S}}(t) = \sum_{k=1}^{K} w_k |\boldsymbol{H}_{\boldsymbol{k}}|^{-1} \mathcal{K} \left(\boldsymbol{H}_{\boldsymbol{k}}^{-1}(t-s_k) \right)$$

Three Options

Triangle-level

Ø Mesh-level

Oatabase-level

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Bandwidth Selection in KDE

$$f_{\mathcal{S}}(t) = \sum_{k=1}^{K} w_k |\boldsymbol{H}_{\boldsymbol{k}}|^{-1} \mathcal{K} \left(\boldsymbol{H}_{\boldsymbol{k}}^{-1}(t-s_k) \right)$$

Three Options

Triangle-level

- H_k different for each triangle on each mesh
- $H_k \propto$ feature covariance over the triangle

2 Mesh-level

Oatabase-level

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Bandwidth Selection in KDE

$$f_{\mathcal{S}}(t) = \sum_{k=1}^{K} w_k |\boldsymbol{H}_{\boldsymbol{k}}|^{-1} \mathcal{K} \left(\boldsymbol{H}_{\boldsymbol{k}}^{-1}(t-s_k) \right)$$

Three Options

- Triangle-level
 - H_k different for each triangle on each mesh
 - $H_k \propto$ feature covariance over the triangle
- Ø Mesh-level
 - $H_k = H$ for a given mesh but differs from mesh to mesh
 - $H_k \propto$ feature covariance **over the mesh**

Oatabase-level

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Bandwidth Selection in KDE

$$f_{\mathcal{S}}(t) = \sum_{k=1}^{K} w_k |\boldsymbol{H}_{\boldsymbol{k}}|^{-1} \mathcal{K} \left(\boldsymbol{H}_{\boldsymbol{k}}^{-1}(t-s_k) \right)$$

Three Options

- Triangle-level
 - H_k different for each triangle on each mesh
 - $H_k \propto$ feature covariance over the triangle
- 2 Mesh-level
 - $H_k = H$ for a given mesh but differs from mesh to mesh
 - $H_k \propto$ feature covariance over the mesh

O Database-level

- $H_k = H$ for all meshes in the database
- $H_k \propto$ average feature covariance over the database

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Bandwidth Selection in KDE

DCG (%) for Possible Bandwidth Selection Strategies on PSB Training Set

	Descriptor		
Bandwidth Setting	Radial	T-plane	Torque
Triangle-level	35.2	-	-
Mesh-level	51.1	51.4	49.9
Database-level	57.0	59.8	55.6

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF(3): Bandwidth Selection in KDE

DCG (%) for Possible Bandwidth Selection Strategies on PSB Training Set

	Descriptor		
Bandwidth Setting	Radial	T-plane	Torque
Triangle-level	35.2	-	-
Mesh-level	51.1	51.4	49.9
Database-level	57.0	59.8	55.6

Fact

Set the bandwidth at database-level

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Descriptor Properties

Remarks

- Effectiveness
- 2 Efficiency
 - Computational
 - Storage-wise
- I Flexibility
- O Robustness
- Invariance

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Descriptor Properties

Remarks

- Effectiveness
- **2** Efficiency
 - Computational \rightarrow FGT
 - Storage-wise
- **③** Flexibility → Simple features + KDE
- **③** Robustness → Bandwidth in KDE
- Invariance

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Outline

3D Object Retrieval

2 Density-Based Shape Description

- Feature Design
- Target Selection
- Descriptor Computation
- Additional Tools
- Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Additional Tools

Exploiting the pdf structure

- Marginalization
- Probability Density Pruning
- Invariance at Matching

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Marginalization removes any local shape information brought by a certain feature component.

$$f_{S_{k}|O_{t}} \triangleq f(s_{1}, \dots, s_{k-1}, s_{k+1}, \dots, s_{m}|O_{t})$$
$$= \int_{S_{k}} f(s_{1}, \dots, s_{k}, \dots, s_{m}|O_{t}) ds_{k}.$$
Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Marginalization removes any local shape information brought by a certain feature component.

$$f_{S_{k}|O_{t}} \triangleq f(s_{1}, \ldots, s_{k-1}, s_{k+1}, \ldots, s_{m}|O_{t})$$
$$= \int_{S_{k}} f(s_{1}, \ldots, s_{k}, \ldots, s_{m}|O_{t}) ds_{k}.$$

Its Uses

- Feature space exploration
- Smaller feature space \Rightarrow Reduced descriptor size

example:
$$(R, \hat{R}_x, \hat{R}_y, \hat{R}_z) \xrightarrow{Marginalization} (R, \hat{R}_x, \hat{R}_y)$$

note $\hat{R}_x^2 + \hat{R}_y^2 + \hat{R}_z^2 = 1$

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, A)$	\hat{N}_{y}	62.6	5120

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, A)$	\hat{N}_{y}	62.6	5120
$(R, \hat{R}_x, \hat{N}_x, A)$	\hat{R}_{y}	63.4	2560

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, A)$	\hat{N}_{y}	62.6	5120
$(R, \hat{R}_x, \hat{N}_x, A)$	\hat{R}_y	63.4	2560
$(\hat{R}_x, \hat{N}_x, A)$	R	61.5	320

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, A)$	\hat{N}_{y}	62.6	5120
$(R, \hat{R}_x, \hat{N}_x, A)$	\hat{R}_{y}	63.4	2560
$(\hat{R}_x, \hat{N}_x, A)$	R	61.5	320
(\hat{R}_x, \hat{N}_x)	A	58.1	64

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, A)$	\hat{N}_{y}	62.6	5120
$(R, \hat{R}_x, \hat{N}_x, A)$	\hat{R}_{y}	63.4	2560
$(\hat{R}_x, \hat{N}_x, A)$	R	61.5	320
(\hat{R}_x, \hat{N}_x)	A	58.1	64
Â _×	\hat{R}_{x}	44.8	8

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (1) Marginalization

Feature Space Exploration by Marginalization on PSB Training

Feature	Removed	DCG	Size
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, \hat{N}_y, A)$	-	62.1	10240
$(R, \hat{R}_x, \hat{R}_y, \hat{N}_x, A)$	\hat{N}_{y}	62.6	5120
$(R, \hat{R}_x, \hat{N}_x, A)$	\hat{R}_{y}	63.4	2560
$(\hat{R}_x, \hat{N}_x, A)$	R	61.5	320
(\hat{R}_x, \hat{N}_x)	A	58.1	64
Â _×	\hat{R}_{x}	44.8	8

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (2) Probability Density Pruning

Probability Density Pruning *identifies and eliminates the targets where the pdf values are negligible.*

Density-Based Shape Descriptors and Similarity Learning

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (2) Probability Density Pruning

Dimensionality Reduction by Probability Density Pruning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Invariance: A Major Problem in Shape Matching

Invariance by design

Invariance by normalization

Invariance at Matching

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Invariance: A Major Problem in Shape Matching

1 Invariance by design

- Feature or descriptor is invariant by definition
- Usually at the cost of shape information
- Invariance by normalization

Invariance at Matching

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Invariance: A Major Problem in Shape Matching

- Invariance by design
 - Feature or descriptor is invariant by definition
 - Usually at the cost of shape information
- Invariance by normalization
 - Normalize the object pose prior to descriptor computation
 - Normalization methods might fail
- Invariance at Matching

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Invariance: A Major Problem in Shape Matching

- Invariance by design
 - Feature or descriptor is invariant by definition
 - Usually at the cost of shape information
- Invariance by normalization
 - Normalize the object pose prior to descriptor computation
 - Normalization methods might fail
- **Invariance at Matching**
 - Evaluate the similarity under all possible transformations and pick the maximum

• Costly if descriptor should be computed for every possible transformation

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Axis Relabelings and Mirror Reflections

3! = 6 axis relabelings $2^3 = 8$ polarity assignments $\Rightarrow 6 \times 8 = 48$ axis configurations

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Axis Relabelings and Mirror Reflections

Given two descriptors \mathbf{f}_1 and \mathbf{f}_2 Axis changing transformations Γ_i , $i = 1, \dots, 48$

- **1** Hold \mathbf{f}_1 fixed
- **2** For each Γ_i , calculate the similarity $sim_i(\mathbf{f}_1, \Gamma_i(\mathbf{f}_2))$
- ${f 0}$ Pick the maximum sim_{i*} as the similarity between ${f f}_1$ and ${f f}_2$

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

In DBF:

No need to recompute the descriptor for every possible axis change Just permute the vector entries!

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

In DBF:

No need to recompute the descriptor for every possible axis change Just permute the vector entries!

A D > A D >

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

In DBF:

No need to recompute the descriptor for every possible axis change Just permute the vector entries!

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

In DBF:

No need to recompute the descriptor for every possible axis change Just permute the vector entries!

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Additive DCG Gain of the Invariant Scheme

	PSB Train	PSB Test	SCU	SHREC-W	ESB
Radial	4.2	3.0	3.1	3.6	1.3
T-plane	5.1	3.6	4.2	2.3	1.7

3 D

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: (3) Invariance at Matching

Additive DCG Gain of the Invariant Scheme

	PSB Train	PSB Test	SCU	SHREC-W	ESB
Radial	4.2	3.0	3.1	3.6	1.3
T-plane	5.1	3.6	4.2	2.3	1.7

Fact

The invariant scheme improves the performance for all databases.

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Descriptor Properties

Remarks

- Effectiveness
- **2** Efficiency
 - Computational \rightarrow FGT
 - Storage-wise
- $\textbf{3} \quad \textbf{Flexibility} \rightarrow \textbf{Simple features} + \textbf{KDE}$
- Robustness → Bandwidth in KDE
- Invariance

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Descriptor Properties

Remarks

- Effectiveness
- **2** Efficiency
 - Computational \rightarrow FGT
 - Storage-wise → Marginalization + Pruning
- **3** Flexibility \rightarrow Simple features + KDE
- **Invariance** → Axis relabelings and reflections

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Outline

3D Object Retrieval

2 Density-Based Shape Description

- Feature Design
- Target Selection
- Descriptor Computation
- Additional Tools
- Comparison Experiments

3 Statistical Similarity Learning

- Score Fusion by Ranking Risk Minimization
- Retrieval Protocols
- Score Fusion Experiments
- 4 Conclusion and Perspectives

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers

Three Comparisons

- Cord and Angle Histograms (CAH) [Paquet and Rioux, 1997]
- Extended Gaussian Images (EGI) [Horn, 1984]
- 3D Hough Transform (3DHT) [Zaharia and Preteux, 2002]

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (1)

(1) Cord and Angle Histograms (CAH)

- Univariate histograms of radial distance and angles
- \rightarrow Univariate **pdfs** of $R, \hat{R}_x, \hat{R}_y, \hat{R}_z$ (Scalar KDE)
- \rightarrow Radial (R, \hat{R})-Descriptor (<u>Multivariate</u> KDE)

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (1)

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (1)

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (2)

(2) Extended Gaussian Images (EGI)

- Accumulator of the normal field
- \rightarrow Normal \hat{N} -Descriptor

(D) (A) (A)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (2)

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (2)

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (3)

(3) 3D Hough Transform (3DHT)

- Accumulator of tangent plane parameters
- \rightarrow **T**-plane (*D*, \hat{N})-Descriptor

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (3)

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers (3)

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to Histogram-Based Peers

Effectiveness Result I

Density-based descriptors perform better than or equally well as their histogram-based counterparts.
Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

- Purely 3D: Radialized Extent Function (REXT) → DCG = 60.1
- Based on 2D: Depth Buffer Images (DBI) → DCG = 66.3

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

- Purely 3D: Radialized Extent Function (REXT) → DCG = 60.1
- Based on 2D:

Depth Buffer Images (DBI) \rightarrow DCG = 66.3

DBF: A Few Instances

Descriptor

DCG

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

- Purely 3D: Radialized Extent Function (REXT) → DCG = 60.1
- Based on 2D:

Depth Buffer Images (DBI) \rightarrow DCG = 66.3

DBF: A Few Instances

Descriptor	DCG
$(D, \hat{\mathbf{N}})$ with <i>Invariant-L</i> ¹	61.4

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

- Purely 3D: Radialized Extent Function (REXT) → DCG = 60.1
- Based on 2D:

Depth Buffer Images (DBI) \rightarrow DCG = 66.3

DBF: A Few Instances

Descriptor	DCG
$(D, \hat{f N})$ with Invariant-L 1	61.4
$(R, \hat{R}) \oplus (D, \hat{N}) \oplus (R, A, SI)$ with L^1	62.6

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

- Purely 3D: Radialized Extent Function (REXT) → DCG = 60.1
- Based on 2D:

Depth Buffer Images (DBI) \rightarrow DCG = 66.3

DBF: A Few Instances

Descriptor	DCG
$(D, \hat{f N})$ with Invariant-L 1	61.4
$(R, \hat{R}) \oplus (D, \hat{N}) \oplus (R, A, SI)$ with L^1	62.6
$(R, \hat{f R}) \oplus (D, \hat{f N})$ with Invariant-L 1	65.9

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Density-Based Shape Descriptors and Similarity Learning

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Comparison to the State-of-the-Art

Effectiveness Result II

On **PSB**:

- **1** DBF is better than any other 3D method.
- **2** DBF is equally well as the best 2D method known (DBI).

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

Reminder: 3D Object Databases

	PSB	SCU	SHREC-W	ESB
#(Classes)	92	53	20	45
Resolution	Low	High	High	Medium
Watertight?	No	Yes	Yes	Yes
Smooth?	No	Yes	Yes	No

Questions

- Given a database, which feature is the most effective?
- Obes descriptor combination work for all databases?

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

4

イロト イヨト イヨト イヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

-2

イロト イヨト イヨト イヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

$R + T \equiv$ Radial \oplus T-plane $R + T + S \equiv$ Radial \oplus T-plane \oplus Sec-Order

(日) (部) (注) (注)

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

$R + T \equiv$ Radial \oplus T-plane $R + T + S \equiv$ Radial \oplus T-plane \oplus Sec-Order

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

Retrieval Performance of the Density-Based Framework

Density-Based Shape Descriptors and Similarity Learning

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

DBF: Performance Across Different Databases

Effectiveness Result III

DBF generalizes well on different 3D databases.

・ロト ・ 同ト ・ ヨト ・ ヨト

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Conclusion on DBF

- Effectiveness
- **2** Efficiency
 - Computational \rightarrow FGT
 - Storage-wise → Marginalization + Pruning
- **③** Flexibility \rightarrow Simple features + KDE
- **5** Invariance \rightarrow Axis relabelings and reflections

Feature Design Target Selection Descriptor Computation Additional Tools Comparison Experiments

Conclusion on DBF

- **①** Effectiveness → State-of-the-Art
- **2** Efficiency
 - Computational \rightarrow FGT
 - Storage-wise → Marginalization + Pruning
- **3** Flexibility \rightarrow Simple features + KDE
- **5** Invariance \rightarrow Axis relabelings and reflections

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

Outline

1 3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

Statistical Similarity Learning (SSL)

Question

Can we boost the performance by choosing a "good" similarity?

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

・ロト ・日下・・ キャト・・

Statistical Similarity Learning (SSL)

Question

Can we boost the performance by choosing a "good" similarity?

• Test among possible choices and pick the best?

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

Statistical Similarity Learning (SSL)

DCG (%) Values on PSB Training using Standard Similarity Measures

Descriptor	L^1	L ²	L^{∞}	KL	χ^2	В	
Radial	57.0	54.7	44.4	54.4	57.0	56.7	
T-plane	59.8	55.3	47.1	58.2	61.1	59.4	

$$L^1 \sim \chi^2 \sim Bhattacharyya(B)$$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

Statistical Similarity Learning (SSL)

Question

Can we boost the performance by choosing a "good" similarity?

Test among possible choices and pick the best?

... or learn the similarities using supervision!

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(日) (部) (注) (注)

SSL: Motivational Example

QUERY

biplane

Density-Based Shape Descriptors and Similarity Learning

æ

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Motivational Example

Density-Based Shape Descriptors and Similarity Learning

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Motivational Example

Density-Based Shape Descriptors and Similarity Learning

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Motivational Example (cont'd)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(D) (A) (A)

SSL: Score Fusion

Motivation & Approach

- \Diamond Different aspects of similarity \leftrightarrow Different descriptors
- No single descriptor can encode all the shape information.
- No single descriptor can perform well for all types of queries.

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(D) (A) (A)

SSL: Score Fusion

Motivation & Approach

- $\Diamond\$ Different aspects of similarity $\leftrightarrow\$ Different descriptors
- No single descriptor can encode all the shape information.
- No single descriptor can perform well for all types of queries.
- \rightarrow Combine similarity scores in a supervised manner
- \rightarrow Linear similarity model

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion

Our Solution

- Ranking shape instances based on their relevance to the query
- → Empirical Ranking Risk (ERR): Number of misranked database shapes w.r.t. a query
 - [Clémençon et al., 2006]: Minimize a convex regularized version of ERR

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(D) (A) (A)

SSL: Score Fusion

Our Solution

- Ranking shape instances based on their relevance to the query
- → Empirical Ranking Risk (ERR): Number of misranked database shapes w.r.t. a query
 - [Clémençon et al., 2006]: Minimize a convex regularized version of ERR
 - Learning a linear scoring function
 - ⇔ Supervised binary classification in score difference domain
 - \rightarrow Basically an **SVM-type** of learning scheme

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

• = • •

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

< D> < B>

SSL: Score Fusion by Ranking Risk Minimization

Notations

• Generic database shapes x, x'

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

A D > A D >

SSL: Score Fusion by Ranking Risk Minimization

- Generic database shapes x, x'
- Query shape q

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

- Generic database shapes x, x'
- Query shape q
- Similarity values s_k ≜ sim_k(x, q), k = 1,..., K or more compactly: s = [s₁,..., s_K] ∈ ℝ^K

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

- Generic database shapes x, x'
- Query shape q
- Similarity values s_k ≜ sim_k(x, q), k = 1,..., K or more compactly: s = [s₁,..., s_K] ∈ ℝ^K
- Linear scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle = \sum_k w_k s_k$
Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Notations

- Generic database shapes x, x'
- Query shape q
- Similarity values s_k ≜ sim_k(x, q), k = 1,..., K or more compactly: s = [s₁,..., s_K] ∈ ℝ^K
- Linear scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle = \sum_k w_k s_k$
- The sought-after weight vector $\mathbf{w} \in \mathbb{R}^{K}$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(D) (A) (A)

SSL: Score Fusion by Ranking Risk Minimization

Notations

- Generic database shapes x, x'
- Query shape q
- Similarity values s_k ≜ sim_k(x, q), k = 1,..., K or more compactly: s = [s₁,..., s_K] ∈ ℝ^K
- Linear scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle = \sum_k w_k s_k$
- The sought-after weight vector $\mathbf{w} \in \mathbb{R}^{K}$
- Relevance variable y, e.g., in bipartite ranking:

y = 1, x is relevant to q y = -1, x is not relevant to q

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy:

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy:

$$\begin{array}{l} \langle \mathbf{w},\mathbf{s}\rangle > \langle \mathbf{w},\mathbf{s}'\rangle & \text{if } y-y'>0, \\ \langle \mathbf{w},\mathbf{s}\rangle < \langle \mathbf{w},\mathbf{s}'\rangle & \text{if } y-y'<0. \end{array}$$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy:

$$\begin{aligned} &\langle \mathbf{w},\mathbf{s}-\mathbf{s}'\rangle>0 & \text{if } y-y'>0,\\ &\langle \mathbf{w},\mathbf{s}-\mathbf{s}'\rangle<0 & \text{if } y-y'<0. \end{aligned}$$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy:

$$\begin{array}{l} \langle \mathbf{w},\mathbf{s}-\mathbf{s}'\rangle > 0 \quad \text{if } y-y' > 0,\\ \langle \mathbf{w},\mathbf{s}-\mathbf{s}'\rangle < 0 \quad \text{if } y-y' < 0. \end{array}$$

Let $z \triangleq sign(y-y')$ and $\mathbf{v} \triangleq \mathbf{s}-\mathbf{s}'$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy:

$$\begin{array}{l} \langle \mathbf{w}, \mathbf{s} - \mathbf{s}' \rangle > 0 \quad \text{if } y - y' > 0, \\ \langle \mathbf{w}, \mathbf{s} - \mathbf{s}' \rangle < 0 \quad \text{if } y - y' < 0. \end{array}$$

Let $z \triangleq sign(y - y')$ and $\mathbf{v} \triangleq \mathbf{s} - \mathbf{s}'$
 $\langle \mathbf{w}, \mathbf{v} \rangle > 0 \quad \text{if } z = +1, \\ \langle \mathbf{w}, \mathbf{v} \rangle < 0 \quad \text{if } z = -1. \end{array}$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Scoring function $S = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy:

S(x,q) > S(x',q) if x is more relevant to q than x', S(x,q) < S(x',q) otherwise.

$$\langle \mathbf{w}, \mathbf{s} - \mathbf{s}' \rangle > 0$$
 if $y - y' > 0$,
 $\langle \mathbf{w}, \mathbf{s} - \mathbf{s}' \rangle < 0$ if $y - y' < 0$.

Let $z \triangleq sign(y - y')$ and $\mathbf{v} \triangleq \mathbf{s} - \mathbf{s}'$

$$\langle \mathbf{w}, \mathbf{v} \rangle > 0$$
 if $z = +1$,
 $\langle \mathbf{w}, \mathbf{v} \rangle < 0$ if $z = -1$.

This is the binary classification problem!

SVM-based solution

C. B. Akgül

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Score Fusion by Ranking Risk Minimization

Remark

Ranking risk in score domain

\Leftrightarrow

Classification error in score difference domain

Ranking Risk in score domain

$$\hat{R}(S;q) = rac{2}{N(N-1)} \sum_{m < n} \mathbb{I}\left\{ (S(x_m,q) - S(x_n,q)) \cdot (y_m - y_n) < 0 \right\}$$

Classification error in score difference domain

$$\hat{R}(\mathbf{w};q) = rac{2}{N(N-1)} \sum_{m < n} \mathbb{I}\left\{ \langle \mathbf{w}, \mathbf{v}_{m,n} \rangle z_{m,n} < 0 \right\}$$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

・ロト ・ 日 ・ ・ 目 ・ ・

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments

3 Statistical Similarity Learning

- Score Fusion by Ranking Risk Minimization
- Retrieval Protocols
- Score Fusion Experiments
- 4 Conclusion and Perspectives

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Retrieval Protocols

Bimodal

- 2 Two-round (Relevance feedback)
 - On-line version
 - Off-line version

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

イロト イヨト イヨト イヨト

SSL: Bimodal Protocol

æ

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

イロト イヨト イヨト イヨト

SSL: Bimodal Protocol

Density-Based Shape Descriptors and Similarity Learning

æ

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

イロト イヨト イヨト イヨト

SSL: Bimodal Protocol

æ

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Bimodal Protocol

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (On-line)

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

93 of 108

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (On-line)

Density-Based Shape Descriptors and Similarity Learning

93 of 108

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (On-line)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (On-line)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (On-line)

Density-Based Shape Descriptors and Similarity Learning

93 of 108

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (On-line)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (Off-line)

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

94 of 108

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (Off-line)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (Off-line)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Protocol (Off-line)

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

• E >

Outline

1 3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments

3 Statistical Similarity Learning

- Score Fusion by Ranking Risk Minimization
- Retrieval Protocols
- Score Fusion Experiments
- 4 Conclusion and Perspectives

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

・ロト ・ 同ト ・ ヨト ・ ヨト

SSL: Experiments

Database

- Princeton Shape Benchmark: 1814 models in 161 shape concepts
- Shape concepts: human, animal, tool, vehicle, household, etc.
- Set A: 946 instances, Set B: 868 instances

	Set A	Set B
Bimodal	Training	Test
Two-round	Database	Queries

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Experiments

Descriptors

- Radial (R, Â)-Descriptor
- T-plane (D, N)-Descriptor
- Sec-Order (R, A, SI)-Descriptor

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Experiments

Descriptors

- Radial (R, Â)-Descriptor
- **T-plane** (D, \hat{N}) -Descriptor
- Sec-Order (R, A, SI)-Descriptor
- → Radialized descriptors
- → Density at 8 concentric shells

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Experiments

Descriptors

- Radial (R, Â)-Descriptor
- **T-plane** (D, \hat{N}) -Descriptor
- Sec-Order (R, A, SI)-Descriptor
- → Radialized descriptors
- → Density at 8 concentric shells

< D> < D> <

 $\mathbf{3}\times\mathbf{8}=\mathbf{24}$ descriptors in total \rightarrow 24 similarity values $\Rightarrow\,\mathbf{s}\in\mathbb{R}^{24}$

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Performance in Bimodal Search

DCG Performance

Score	PSB Set A	PSB Set B
SUM		
SSL		

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Performance in Bimodal Search

DCG Performance

Score	PSB Set A	PSB Set B
SUM	$61.6{\pm}28.1$	
SSL	74.9±25.2	

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Performance in Bimodal Search

DCG Performance

Score	PSB Set A	PSB Set B
SUM	$61.6{\pm}28.1$	$60.6{\pm}28.1$
SSL	74.9±25.2	62.5±27.7

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Performance in Bimodal Search

DCG Performance

Score	PSB Set A	PSB Set B
SUM	$61.6{\pm}28.1$	$60.6{\pm}28.1$
SSL	74.9±25.2	62.5±27.7

Comment

Not very impressive on the Test Set!

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Performance in Bimodal Search

DCG Performance

Score	PSB Set A	PSB Set B
SUM	$61.6{\pm}28.1$	$60.6{\pm}28.1$
SSL	74.9±25.2	62.5±27.7

Comment

Not very impressive on the Test Set!

BUT! On Set B, *SSL* didn't work for 61 concepts (out of 161).

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Performance in Bimodal Search

DCG Performance

Score	PSB Set A	PSB Set B
SUM	$61.6{\pm}28.1$	$60.6{\pm}28.1$
SSL	74.9±25.2	62.5±27.7
SUM+SSL	-	64.4±23.9

Comment

Not very impressive on the Test Set!

BUT! On Set B, *SSL* didn't work for 61 concepts (out of 161). *If we use the SUM rule for negatively affected concepts...*
Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round On-line Example Query

HUMAN

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round On-line Example Query

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(日) (部) (注) (注)

SSL: Two-round On-line Example Query

C. B. Akgül

Density-Based Shape Descriptors and Similarity Learning

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

A D F A R F A B

SSL: Performance in Two-round Search (On-line)

On-line version

Radial, T-plane and Sec-Order Scores

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

A D F A R F A B

SSL: Performance in Two-round Search (On-line)

On-line version

Radial, T-plane and Sec-Order Scores

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(D) (A) (A)

SSL: Performance in Two-round Search (On-line)

On-line version

Radial, T-plane and Sec-Order Scores

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

(日) (部) (注) (注)

SSL: Two-round Off-line Example Query

BENCH

æ

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Off-line Example Query

Density-Based Shape Descriptors and Similarity Learning

4

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

SSL: Two-round Off-line Example Query

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

A D F A R F A B

SSL: Performance in Two-round Search (Off-line)

Off-line version

Score Fusion by Ranking Risk Minimization Retrieval Protocols Score Fusion Experiments

Additive DCG Gain of SSL

Two-Round	Two-Round	Two-Round	Bimodal
On-line $(M = 8)$	On-line $(M = 12)$	Off-line	
6.0	8.0	5.0	2.0-4.0

Conclusion on SSL

SSL improves retrieval effectiveness.

Outline

3D Object Retrieval

- 2 Density-Based Shape Description
 - Feature Design
 - Target Selection
 - Descriptor Computation
 - Additional Tools
 - Comparison Experiments
- 3 Statistical Similarity Learning
 - Score Fusion by Ranking Risk Minimization
 - Retrieval Protocols
 - Score Fusion Experiments
- 4 Conclusion and Perspectives

Image: A matrix

• = > •

Contributions

Density-Based Shape Description Framework

- A family of 3D shape descriptors
- A unifying approach for histogram-based methods
- A State-of-the-Art shape description scheme
 - Effective
 - Efficient
 - Flexible
 - Robust
 - Invariant

・ロト ・ (同) ・ (三) ・ (三)

Contributions

Statistical Similarity Learning

- A score fusion approach with supervision
- A first application in 3D shape retrieval
- Independent of description modality
 - \rightarrow Applicable to any type of retrieval problem
- Satisfactory performance in different protocols

Image: A matrix

Perspectives on DBF

- Extending invariant matching to arbitrary rotations
- Parametric density estimation
- Information-theoretical analysis of local surface features

Perspectives on Similarity Learning

- Application to other description schemes
- Non-linear scoring functions
- DCG-based criteria

() < </p>