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Information Retrieval

In text-based retrieval:

Query is a set of words.

Search results are typically based on occurrence.
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Information Retrieval for Multimedia

For text-based retrieval of multimedia data:

Query should be given a textual description:
not always possible!

Database items should be annotated beforehand:
extremely laborious!
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Content-Based Retrieval (CBR)

In CBR

No textual description

No need for database annotation

Major Issues

1 How to describe the multimedia content?
Content Description Problem

2 How to evaluate the relevance between entities?
Similarity Problem
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Scope and Contributions

1 Content Description for 3D Objects
Density-Based Shape Description Framework

2 Similarity Learning for CBR
Similarity Score Fusion by Ranking Risk Minimization
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3D Object Retrieval

Generic Retrieval Algorithm

A query object Q

Database objects Ot , t = 1, . . . , T

Database descriptors ft (one for each Ot)

1 Compute the descriptor fq for Q

2 For each t, calculate a similarity score between Q and Ot

simt = sim(Q, Ot) = ϕ(fq, ft)

3 Display the database objects in descending order of similarities
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3D Object Retrieval: Objectives

What do we aim at?

More similar (or relevant) objects → Beginning of the list

How do we measure the performance?

Precision-Recall curve

Nearest-Neighbor Score

Discounted Cumulative Gain
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3D Object Retrieval: Performance Measures

Definition: Precision and Recall

Precision = #(Relevant items in the first K matches)
K

Recall = #(Relevant items in the first K matches)
Size of the query class
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3D Object Retrieval: Performance Measures

Nearest-Neighbor Score (NN)

Percentage of the first correct matches

Indicative of the classification performance

NN ∈ [0, 100] (%)

Discounted Cumulative Gain (DCG)

Considers the full list of retrieval results

A user is less likely to consider elements near the end of the list.

→ Correct results near the front are weighted more.

DCG ∈ [0, 100] (%)
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3D Object Databases

Definition: Triangular Mesh

A triangular mesh is a union of triangles which approximates a
continuous surface in 3D.
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3D Object Databases

1 Princeton Shape Benchmark (PSB)

2 Sculpteur (SCU)

3 SHREC Watertight (SHREC-W)

4 Purdue Engineering Shape Benchmark
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3D Object Databases: PSB

Princeton Shape Benchmark (PSB)

Wide range of shape classes:
flower, chair, human, spacecraft, piano, dog, ...

1814 objects in 161 classes:
Training (907 objects, 90 classes) and Test (907 objects, 92 classes)
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3D Object Databases: SCU

Sculpteur (SCU)

Archaelogically valuable museum objects:
amphora, vase, pavement, statue, relievo, ...

513 objects in 53 classes
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3D Object Databases: SHREC-W

SHREC’07 Watertight (SHREC-W)

A limited range of shape classes:
cup, chair, bird, human, hand, spiral, ...

Classification induced by topological equivalences

400 objects in 20 classes
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3D Object Databases: ESB

Purdue Engineering Shape Benchmark (ESB)

Engineering parts (CAD):
bearing, gear, handle, elbow, housing, ...

815 objects in 45 classes
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3D Object Databases: Comparison

Properties

PSB SCU SHREC-W ESB

#(Classes) 92 53 20 45
Resolution Low High High Medium

Watertight? No Yes Yes Yes
Smooth? No Yes Yes No

Remark

Different 3D application domains

Diverse semantics and shape properties
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3D Shape Descriptors

Definition: Shape Descriptor

A shape descriptor is a vector or graph-like data structure, which
encodes geometrical and/or topological shape characteristics.
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Captures essential shape
characteristics

Eliminates irrelevant details

→ High retrieval performance
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Fast to compute

Low storage cost
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Can be computed for different shape
representations:

Triangular mesh

3D point cloud

Parametric surface

Implicit surface

Voxel ...
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Insensitive to:

Mesh resolution

Mesh degeneracies

Small shape variation

Noise
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Shape is what remains after the
effect of rigid motions+scaling are
removed.
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Translation
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Pose Change
(Rotation and Reflection)
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

Isotropic Rescaling
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3D Shape Descriptors: Properties

A “good” descriptor is

1 Effective

2 Efficient

3 Flexible

4 Robust

5 Invariant

BUT
without loss of shape information!
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3D Shape Descriptors: A Taxonomy

1 Histogram-Based

2 Transform-Based

3 Graph-Based

4 “2D Image”-Based

5 Others
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3D Shape Descriptors: A Taxonomy

1 Histogram-Based

2 Transform-Based

3 Graph-Based

4 “2D Image”-Based

5 Others

Functions on the 3D grid

3D Fourier Transform

Radial Cosine Transform

Functions on the unit sphere

Angular Radial Transform

Spherical Harmonics

Spherical Wavelets
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3D Shape Descriptors: A Taxonomy

1 Histogram-Based

2 Transform-Based

3 Graph-Based

4 “2D Image”-Based

5 Others

Multiresolution Reeb Graphs

Skeletal Graphs
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3D Shape Descriptors: A Taxonomy

1 Histogram-Based

2 Transform-Based

3 Graph-Based

4 “2D Image”-Based

5 Others

Multiple views or projections

Silhouette Descriptor

Depth Buffer Images

Lightfield Descriptor
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3D Shape Descriptors: A Taxonomy

1 Histogram-Based

2 Transform-Based

3 Graph-Based

4 “2D Image”-Based

5 Others

Spin Images

3D Zernike Moments

Reflective Symmetry
Descriptors

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 22 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

3D Shape Descriptors: A Taxonomy

1 Histogram-Based

2 Transform-Based

3 Graph-Based

4 “2D Image”-Based

5 Others

Cord and Angle Histograms

Shape Distributions

Extended Gaussian Images

3D Hough Transform

Shape Spectrum

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 22 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

Outline

1 3D Object Retrieval

2 Density-Based Shape Description
Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

3 Statistical Similarity Learning
Score Fusion by Ranking Risk Minimization
Retrieval Protocols
Score Fusion Experiments

4 Conclusion and Perspectives

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 23 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

Density-Based Framework (DBF)

Definition: Density-Based Shape Descriptor

A density-based descriptor of a 3D shape is
the probability density function (pdf) of a local surface feature.
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Density-Based Framework (DBF)

Definition: Density-Based Shape Descriptor

A density-based descriptor of a 3D shape is
the probability density function (pdf) of a local surface feature.

The Premise

Similar shapes induce similar feature distributions.
♦ Similarity between two shapes ↔ Variation between feature pdfs
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Density-Based Framework (DBF)

Earlier Approaches

Shape Distributions [Osada et al., 2002]
Cord and Angle Histograms [Paquet and Rioux, 1997]
Extended Gaussian Images [Horn, 1984; Kang and Ikeuchi, 1993]
3D Hough Transform [Zaharia and Prêteux, 2002]
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Key Aspects of DBF

Scalar vs. Multivariate features
→ Exhaustive local characterization

Histogram vs. Kernel Density Estimation (KDE)

More flexible
Smoother estimates
Fast thanks to Fast Gauss Transform (FGT)
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Density-Based Framework (DBF)

Earlier Approaches

Shape Distributions [Osada et al., 2002]
Cord and Angle Histograms [Paquet and Rioux, 1997]
Extended Gaussian Images [Horn, 1984; Kang and Ikeuchi, 1993]
3D Hough Transform [Zaharia and Prêteux, 2002]

Key Aspects of DBF

Scalar vs. Multivariate features
→ Exhaustive local characterization

Histogram vs. Kernel Density Estimation (KDE)

More flexible
Smoother estimates
Fast thanks to Fast Gauss Transform (FGT)

A unifying framework → Family of descriptors
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DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh M
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DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh M
1 Feature Design

Choose a local surface feature S ∈ RS

Obtain a set of feature observations {sk}
K
k=1

using the mesh points
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Given a 3D objet O, represented by a mesh M
1 Feature Design

Choose a local surface feature S ∈ RS

Obtain a set of feature observations {sk}
K
k=1

using the mesh points

2 Target Selection

Determine the pdf evaluation points for the feature S

→ Targets: RS = {tn ∈ RS}
N
n=1
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DBF: A Three-Stage Process

Given a 3D objet O, represented by a mesh M
1 Feature Design

Choose a local surface feature S ∈ RS

Obtain a set of feature observations {sk}
K
k=1

using the mesh points

2 Target Selection

Determine the pdf evaluation points for the feature S

→ Targets: RS = {tn ∈ RS}
N
n=1

3 Computation

Using the observations, estimate the feature pdf
at designated targets

fS|O = [fS(t1|O), . . . , fS(tN |O)] ∈ R
N
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DBF(1): Local Surface Features
Radial distance Radial direction Normal direction T-plane distance Shape index

Alignment Torque
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Radial distance Radial direction Normal direction T-plane distance Shape index

Alignment Torque

Radial Direction
R̂ , (R̂x , R̂y , R̂z) ∈ S2
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Scale-invariant
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T-plane Distance

D = R
∣

∣

∣
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∣
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π
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DBF(1): Local Surface Features
Radial distance Radial direction Normal direction T-plane distance Shape index

Alignment Torque

Torque
C , R̂ × N̂ ∈ B2
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Scale-invariant
First-order
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DBF(1): Local Characterization of a 3D Surface

Remark

Join the features → Obtain a multivariate local characterization
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DBF(1): Local Characterization of a 3D Surface

Radial
(R, R̂)
parametrizes the surface point

Zero-order
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DBF(1): Local Characterization of a 3D Surface

T-plane
(D, N̂)
parametrizes the tangent plane

First-order
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DBF(1): Local Characterization of a 3D Surface

“Sec-Order”
(R, A, SI )
categorical surface information

Second-order
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DBF(1): Local Characterization of a 3D Surface

Full
(R, R̂, N̂,SI )
characterization up to

second-order
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Even “More” Multivariate
(R, R̂, D, N̂,SI , A,C)
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DBF(1): Local Characterization of a 3D Surface

Radial (R, R̂) T-plane (D, N̂) Sec-Order (R, A, SI )
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DBF(1): Feature Calculation

Features are calculated at mesh points.
Which ones?
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DBF(1): Feature Calculation

Features are calculated at mesh points.
Which ones?

Vertices

Triangle centers

By averaging over the
triangle

Points given by Simpson’s approximation to the averaging integral
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DBF(1): Effect of Feature Calculation

DCG for the Radial (R, R̂)-Descriptor
Databases

Feature Calculation PSB Training SCU

Vertex 56.0 71.3
Centroid 55.6 71.2
Simpson 57.0 71.3
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DBF(1): Effect of Feature Calculation

DCG for the Radial (R, R̂)-Descriptor
Databases

Feature Calculation PSB Training SCU

Vertex 56.0 71.3
Centroid 55.6 71.2
Simpson 57.0 71.3

Facts

Low mesh resolution (PSB)
→ Simpson averaging has a positive effect

High mesh resolution (SCU)
→ All schemes are performance-wise equivalent
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DBF(2): Target Selection

Reminder

Targets ↔ Pdf evaluation points
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Scalar S ∈ I = [a, b] ∈ R
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1 Uniform Sampling (S1)
2 Equal-probability (non-uniform) Sampling (S2)

Unit-norm vector S ∈ S2

Radial Direction, Normal Direction
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2 Sampling by spherical coordinates (V2)
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DBF(2): Target Selection

Scalar S ∈ I = [a, b] ∈ R

Radial Distance, T-plane Distance, Alignment

1 Uniform Sampling (S1)
2 Equal-probability (non-uniform) Sampling (S2)

Unit-norm vector S ∈ S2

Radial Direction, Normal Direction

1 Octahedron subdivision (V1)
2 Sampling by spherical coordinates (V2)

General multivariate S = (S1, S2) ∈ RS1 ×RS2

Take the Cartesian product of individual target sets
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DBF(2): Effect of Target Selection

DCG Performance of Sampling Schemes
Sampling Radial T-plane

S1×V1 57.0 59.8
S1×V2 56.8 60.5
S2×V1 56.0 59.5
S2×V2 56.3 60.1
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DBF(2): Effect of Target Selection

DCG Performance of Sampling Schemes
Sampling Radial T-plane

S1×V1 57.0 59.8
S1×V2 56.8 60.5
S2×V1 56.0 59.5
S2×V2 56.3 60.1

Fact

All target selection schemes lead to equivalent performances...
provided that the non-uniformity of targets is taken into account at similarity

computation.
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fS(tn) =
K

∑

k=1

wk |Hk |
−1KKK

(

H−1
k (tn − sk)

)

Sources (or observations) {sk}
K
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DBF(3): Kernel Density Estimation (KDE)
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(
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)

Sources (or observations) {sk}
K
k=1

Targets {tn}
N
n=1

Weights {wk}
K
k=1 set to relative triangular areas

∑

k wk = 1

Kernel K set to Gaussian

Bandwidth parameter matrices {Hk}
K
k=1
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DBF(3): Computational Complexity of KDE

fS(tn) =
K

∑

k=1

wk |Hk |
−1KKK
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Direct Evaluation → O(KN)
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DBF(3): Computational Complexity of KDE

fS(tn) =
K

∑

k=1

wk |Hk |
−1KKK

(

H−1
k (tn − sk)

)

Direct Evaluation → O(KN)

When the kernel K is Gaussian → O(K + N)
Fast Gauss Transform (FGT)
[Greengard and Strain, 1991; Yang et al., 2003]

Example: K = 130000 and N = 1024

Direct → 125 secs

FGT → 2.5 secs
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DBF(3): Effect of the Bandwidth in KDE

Remark

The bandwidth parameter controls the smoothing behavior of KDE:
Larger bandwidth → Smoother estimate
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DBF(3): Effect of the Bandwidth in KDE

Remark

The bandwidth parameter controls the smoothing behavior of KDE:
Larger bandwidth → Smoother estimate

Large bandwidth → Small descriptor variation

Good when we want to compare similar shapes
Descriptors might fail to be sufficiently discriminative

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 42 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

DBF(3): Effect of the Bandwidth in KDE

Remark

The bandwidth parameter controls the smoothing behavior of KDE:
Larger bandwidth → Smoother estimate

Large bandwidth → Small descriptor variation

Good when we want to compare similar shapes
Descriptors might fail to be sufficiently discriminative

Small bandwidth → Large descriptor variation

Good when we want to discriminate different shapes
Pdf estimate might overfit the observations
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Robustness against Low Mesh Resolution
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DBF(3): Effect of the Bandwidth in KDE

Fact

Variation can be rendered negligible by increasing the bandwidth.
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Fact

Variation can be rendered negligible by increasing the bandwidth.

Question

Should we increase the bandwidth indefinitely?

Remark

In retrieval, we want:

Small variation between similar shapes,

Large variation between different shapes!
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DBF(3): Effect of the Bandwidth in KDE

Fact

Variation can be rendered negligible by increasing the bandwidth.

Question

Should we increase the bandwidth indefinitely?

Remark

In retrieval, we want:

Small variation between similar shapes,

Large variation between different shapes!

Answer

Setting the bandwidth is a matter of compromise between descriptor
smoothness vs. discriminativeness.

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 45 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

DBF(3): Bandwidth Selection in KDE

fS(t) =

K
∑

k=1

wk |HkHkHk |
−1 K

(

HkHkHk
−1(t − sk)

)

Three Options

1 Triangle-level

2 Mesh-level

3 Database-level
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DBF(3): Bandwidth Selection in KDE

fS(t) =

K
∑

k=1

wk |HkHkHk |
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)

Three Options

1 Triangle-level

Hk different for each triangle on each mesh
Hk ∝ feature covariance over the triangle

2 Mesh-level

Hk = H for a given mesh but differs from mesh to mesh
Hk ∝ feature covariance over the mesh

3 Database-level

Hk = H for all meshes in the database
Hk ∝ average feature covariance over the database
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DBF(3): Bandwidth Selection in KDE

DCG (%) for Possible Bandwidth Selection Strategies
on PSB Training Set

Descriptor
Bandwidth Setting Radial T-plane Torque

Triangle-level 35.2 - -
Mesh-level 51.1 51.4 49.9

Database-level 57.0 59.8 55.6
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DBF(3): Bandwidth Selection in KDE

DCG (%) for Possible Bandwidth Selection Strategies
on PSB Training Set

Descriptor
Bandwidth Setting Radial T-plane Torque

Triangle-level 35.2 - -
Mesh-level 51.1 51.4 49.9

Database-level 57.0 59.8 55.6

Fact

Set the bandwidth at database-level
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DBF: Descriptor Properties

Remarks

1 Effectiveness
2 Efficiency

Computational
Storage-wise

3 Flexibility

4 Robustness

5 Invariance
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DBF: Descriptor Properties

Remarks

1 Effectiveness
2 Efficiency

Computational → FGT
Storage-wise

3 Flexibility → Simple features + KDE

4 Robustness → Bandwidth in KDE

5 Invariance

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 49 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

Outline

1 3D Object Retrieval

2 Density-Based Shape Description
Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

3 Statistical Similarity Learning
Score Fusion by Ranking Risk Minimization
Retrieval Protocols
Score Fusion Experiments

4 Conclusion and Perspectives
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DBF: Additional Tools

Exploiting the pdf structure

1 Marginalization

2 Probability Density Pruning

3 Invariance at Matching
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DBF: (1) Marginalization

Marginalization removes any local shape information brought by

a certain feature component.

fS 6k |Ot
, f (s1, . . . , sk−1, sk+1, . . . , sm|Ot)

=

∫

Sk

f (s1, . . . , sk , . . . , sm|Ot) dsk .
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DBF: (1) Marginalization

Marginalization removes any local shape information brought by

a certain feature component.

fS 6k |Ot
, f (s1, . . . , sk−1, sk+1, . . . , sm|Ot)

=

∫

Sk

f (s1, . . . , sk , . . . , sm|Ot) dsk .

Its Uses

Feature space exploration

Smaller feature space ⇒ Reduced descriptor size

example: (R, R̂x , R̂y , R̂z)
Marginalization
−−−−−−−−−→ (R, R̂x , R̂y )

note R̂2
x +R̂2

y +R̂2
z =1
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DBF: (1) Marginalization

Feature Space Exploration by Marginalization
on PSB Training

Feature Removed DCG Size

(R, R̂x , R̂y , N̂x , N̂y ,A) - 62.1 10240
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DBF: (2) Probability Density Pruning

Probability Density Pruning identifies and eliminates the targets

where the pdf values are negligible.
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DBF: (2) Probability Density Pruning
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DBF: (3) Invariance at Matching

Invariance: A Major Problem in Shape Matching

1 Invariance by design

2 Invariance by normalization

3 Invariance at Matching
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Invariance: A Major Problem in Shape Matching

1 Invariance by design

Feature or descriptor is invariant by definition
Usually at the cost of shape information

2 Invariance by normalization
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DBF: (3) Invariance at Matching

Invariance: A Major Problem in Shape Matching

1 Invariance by design

Feature or descriptor is invariant by definition
Usually at the cost of shape information

2 Invariance by normalization

Normalize the object pose prior to descriptor computation
Normalization methods might fail

3 Invariance at Matching

Evaluate the similarity under all possible transformations and
pick the maximum
Costly if descriptor should be computed for every possible
transformation
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DBF: (3) Invariance at Matching

Axis Relabelings and Mirror Reflections

3! = 6 axis relabelings
23 = 8 polarity assignments

⇒ 6 × 8 = 48 axis configurations
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DBF: (3) Invariance at Matching

Axis Relabelings and Mirror Reflections

Given two descriptors f1 and f2
Axis changing transformations Γi , i = 1, . . . , 48

1 Hold f1 fixed

2 For each Γi , calculate the similarity simi (f1, Γi (f2))

3 Pick the maximum simi∗ as the similarity between f1 and f2

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 57 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

DBF: (3) Invariance at Matching

In DBF:

No need to recompute the descriptor for every possible axis change
Just permute the vector entries!
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DBF: (3) Invariance at Matching

In DBF:

No need to recompute the descriptor for every possible axis change
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DBF: (3) Invariance at Matching

Additive DCG Gain of the Invariant Scheme

PSB Train PSB Test SCU SHREC-W ESB
Radial 4.2 3.0 3.1 3.6 1.3
T-plane 5.1 3.6 4.2 2.3 1.7
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DBF: (3) Invariance at Matching

Additive DCG Gain of the Invariant Scheme

PSB Train PSB Test SCU SHREC-W ESB
Radial 4.2 3.0 3.1 3.6 1.3
T-plane 5.1 3.6 4.2 2.3 1.7

Fact

The invariant scheme improves the performance for all databases.
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DBF: Descriptor Properties

Remarks

1 Effectiveness
2 Efficiency

Computational → FGT
Storage-wise

3 Flexibility → Simple features + KDE

4 Robustness → Bandwidth in KDE

5 Invariance
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DBF: Descriptor Properties

Remarks

1 Effectiveness
2 Efficiency

Computational → FGT
Storage-wise → Marginalization + Pruning

3 Flexibility → Simple features + KDE

4 Robustness → Bandwidth in KDE

5 Invariance → Axis relabelings and reflections
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Outline

1 3D Object Retrieval

2 Density-Based Shape Description
Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

3 Statistical Similarity Learning
Score Fusion by Ranking Risk Minimization
Retrieval Protocols
Score Fusion Experiments

4 Conclusion and Perspectives
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DBF: Comparison to Histogram-Based Peers

Three Comparisons

1 Cord and Angle Histograms (CAH) [Paquet and Rioux, 1997]

2 Extended Gaussian Images (EGI) [Horn, 1984]

3 3D Hough Transform (3DHT) [Zaharia and Preteux, 2002]
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DBF: Comparison to Histogram-Based Peers (1)

(1) Cord and Angle Histograms (CAH)

Univariate histograms of radial distance and angles

→ Univariate pdfs of R, R̂x , R̂y , R̂z (Scalar KDE)

→ Radial (R, R̂)-Descriptor (Multivariate KDE)
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DBF: Comparison to Histogram-Based Peers (2)

(2) Extended Gaussian Images (EGI)

Accumulator of the normal field

→ Normal N̂-Descriptor
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DBF: Comparison to Histogram-Based Peers (2)
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DBF: Comparison to Histogram-Based Peers (2)
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DBF: Comparison to Histogram-Based Peers (3)

(3) 3D Hough Transform (3DHT)

Accumulator of tangent plane parameters

→ T-plane (D, N̂)-Descriptor
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DBF: Comparison to Histogram-Based Peers

Effectiveness Result I

Density-based descriptors perform better than or equally well as their
histogram-based counterparts.
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DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set
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DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

Purely 3D:
Radialized Extent Function (REXT) → DCG = 60.1

Based on 2D:
Depth Buffer Images (DBI) → DCG = 66.3
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Best Methods on PSB Test Set

Purely 3D:
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DBF: A Few Instances

Descriptor DCG
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DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

Purely 3D:
Radialized Extent Function (REXT) → DCG = 60.1

Based on 2D:
Depth Buffer Images (DBI) → DCG = 66.3

DBF: A Few Instances

Descriptor DCG

(D, N̂) with Invariant-L1 61.4
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DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

Purely 3D:
Radialized Extent Function (REXT) → DCG = 60.1

Based on 2D:
Depth Buffer Images (DBI) → DCG = 66.3

DBF: A Few Instances

Descriptor DCG

(D, N̂) with Invariant-L1 61.4

(R, R̂) ⊕ (D, N̂) ⊕ (R,A,SI ) with L1 62.6
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DBF: Comparison to the State-of-the-Art

Best Methods on PSB Test Set

Purely 3D:
Radialized Extent Function (REXT) → DCG = 60.1

Based on 2D:
Depth Buffer Images (DBI) → DCG = 66.3

DBF: A Few Instances

Descriptor DCG

(D, N̂) with Invariant-L1 61.4

(R, R̂) ⊕ (D, N̂) ⊕ (R,A,SI ) with L1 62.6

(R, R̂) ⊕ (D, N̂) with Invariant-L1 65.9
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DBF: Comparison to the State-of-the-Art

Effectiveness Result II

On PSB:

1 DBF is better than any other 3D method.

2 DBF is equally well as the best 2D method known (DBI).
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DBF: Performance Across Different Databases

Reminder: 3D Object Databases

PSB SCU SHREC-W ESB

#(Classes) 92 53 20 45
Resolution Low High High Medium

Watertight? No Yes Yes Yes
Smooth? No Yes Yes No

Questions

1 Given a database, which feature is the most effective?

2 Does descriptor combination work for all databases?
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R + T ≡ Radial ⊕ T-plane
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Effectiveness Result III

DBF generalizes well on different 3D databases.

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 77 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

DBF

Conclusion on DBF

1 Effectiveness
2 Efficiency

Computational → FGT
Storage-wise → Marginalization + Pruning

3 Flexibility → Simple features + KDE

4 Robustness → Bandwidth in KDE

5 Invariance → Axis relabelings and reflections
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DBF

Conclusion on DBF

1 Effectiveness → State-of-the-Art
2 Efficiency

Computational → FGT
Storage-wise → Marginalization + Pruning

3 Flexibility → Simple features + KDE

4 Robustness → Bandwidth in KDE

5 Invariance → Axis relabelings and reflections
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Question

Can we boost the performance by choosing a “good” similarity?
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DCG (%) Values on PSB Training
using Standard Similarity Measures

Descriptor L1 L2 L∞ KL χ2 B

Radial 57.0 54.7 44.4 54.4 57.0 56.7
T-plane 59.8 55.3 47.1 58.2 61.1 59.4

L1 ∼ χ2 ∼ Bhattacharyya(B)
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Statistical Similarity Learning (SSL)

Question

Can we boost the performance by choosing a “good” similarity?

Test among possible choices and pick the best?

... or learn the similarities using supervision!
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Motivation & Approach

♦ Different aspects of similarity ↔ Different descriptors

No single descriptor can encode all the shape information.

No single descriptor can perform well for all types of queries.
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SSL: Score Fusion

Motivation & Approach

♦ Different aspects of similarity ↔ Different descriptors

No single descriptor can encode all the shape information.

No single descriptor can perform well for all types of queries.

→ Combine similarity scores in a supervised manner

→ Linear similarity model
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Our Solution

Ranking shape instances based on their relevance to the query

→ Empirical Ranking Risk (ERR):
Number of misranked database shapes w.r.t. a query

[Clémençon et al., 2006]:
Minimize a convex regularized version of ERR
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SSL: Score Fusion

Our Solution

Ranking shape instances based on their relevance to the query

→ Empirical Ranking Risk (ERR):
Number of misranked database shapes w.r.t. a query

[Clémençon et al., 2006]:
Minimize a convex regularized version of ERR

Learning a linear scoring function
⇔ Supervised binary classification in score difference domain
→ Basically an SVM-type of learning scheme
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SSL: Score Fusion by Ranking Risk Minimization

Notations

Generic database shapes x , x ′

Query shape q

Similarity values sk , simk(x , q), k = 1, . . . ,K
or more compactly: s = [s1, . . . , sK ] ∈ R

K

Linear scoring function S = 〈w, s〉 =
∑

k wksk

The sought-after weight vector w ∈ R
K

Relevance variable y , e.g., in bipartite ranking:

y = 1, x is relevant to q

y = −1, x is not relevant to q
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Scoring function S = 〈w, s〉 should satisfy:

S(x , q) > S(x ′, q) if x is more relevant to q than x ′,
S(x , q) < S(x ′, q) otherwise.
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Scoring function S = 〈w, s〉 should satisfy:

S(x , q) > S(x ′, q) if x is more relevant to q than x ′,
S(x , q) < S(x ′, q) otherwise.

〈w, s − s′〉 > 0 if y − y ′ > 0,
〈w, s − s′〉 < 0 if y − y ′ < 0.

Let z , sign(y − y ′) and v , s − s′
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SSL: Score Fusion by Ranking Risk Minimization

Scoring function S = 〈w, s〉 should satisfy:

S(x , q) > S(x ′, q) if x is more relevant to q than x ′,
S(x , q) < S(x ′, q) otherwise.

〈w, s − s′〉 > 0 if y − y ′ > 0,
〈w, s − s′〉 < 0 if y − y ′ < 0.

Let z , sign(y − y ′) and v , s − s′

〈w, v〉 > 0 if z = +1,
〈w, v〉 < 0 if z = −1.
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SSL: Score Fusion by Ranking Risk Minimization

Scoring function S = 〈w, s〉 should satisfy:

S(x , q) > S(x ′, q) if x is more relevant to q than x ′,
S(x , q) < S(x ′, q) otherwise.

〈w, s − s′〉 > 0 if y − y ′ > 0,
〈w, s − s′〉 < 0 if y − y ′ < 0.

Let z , sign(y − y ′) and v , s − s′

〈w, v〉 > 0 if z = +1,
〈w, v〉 < 0 if z = −1.

This is the binary classification problem!

SVM-based solution
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Remark

Ranking risk in score domain
⇔

Classification error in score difference domain

Ranking Risk in score domain

R̂(S ; q) =
2

N(N − 1)

X

m<n

I {(S(xm, q) − S(xn, q)) · (ym − yn) < 0}

Classification error in score difference domain

R̂(w; q) =
2

N(N − 1)

X

m<n

I {〈w, vm,n〉 zm,n < 0}
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1 Bimodal
2 Two-round (Relevance feedback)

1 On-line version
2 Off-line version
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SSL: Experiments

Database

Princeton Shape Benchmark: 1814 models in 161 shape concepts

Shape concepts: human, animal, tool, vehicle, household, etc.

Set A: 946 instances, Set B: 868 instances

Set A Set B

Bimodal Training Test

Two-round Database Queries
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Descriptors

Radial (R, R̂)-Descriptor

T-plane (D, N̂)-Descriptor

Sec-Order (R, A, SI )-Descriptor
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Descriptors

Radial (R, R̂)-Descriptor
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→ Radialized descriptors

→ Density at 8 concentric shells

C. B. Akgül Density-Based Shape Descriptors and Similarity Learning 97 of 108



3D Object Retrieval
Density-Based Shape Description

Statistical Similarity Learning
Conclusion and Perspectives

Score Fusion by Ranking Risk Minimization
Retrieval Protocols
Score Fusion Experiments
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Descriptors

Radial (R, R̂)-Descriptor

T-plane (D, N̂)-Descriptor

Sec-Order (R, A, SI )-Descriptor

→ Radialized descriptors

→ Density at 8 concentric shells

3 × 8 = 24 descriptors in total → 24 similarity values ⇒ s ∈ R
24
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DCG Performance

Score PSB Set A PSB Set B
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Comment

Not very impressive on the Test Set!
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Comment

Not very impressive on the Test Set!

BUT!
On Set B, SSL didn’t work for 61 concepts (out of 161).
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SSL: Performance in Bimodal Search

DCG Performance

Score PSB Set A PSB Set B

SUM 61.6±28.1 60.6±28.1
SSL 74.9±25.2 62.5±27.7

SUM+SSL - 64.4±23.9

Comment

Not very impressive on the Test Set!

BUT!
On Set B, SSL didn’t work for 61 concepts (out of 161).
If we use the SUM rule for negatively affected concepts...
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SSL

Additive DCG Gain of SSL

Two-Round Two-Round Two-Round Bimodal
On-line (M = 8) On-line (M = 12) Off-line

6.0 8.0 5.0 2.0-4.0

Conclusion on SSL

SSL improves retrieval effectiveness.
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Outline

1 3D Object Retrieval

2 Density-Based Shape Description
Feature Design
Target Selection
Descriptor Computation
Additional Tools
Comparison Experiments

3 Statistical Similarity Learning
Score Fusion by Ranking Risk Minimization
Retrieval Protocols
Score Fusion Experiments

4 Conclusion and Perspectives
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Contributions

Density-Based Shape Description Framework

A family of 3D shape descriptors

A unifying approach for histogram-based methods

A State-of-the-Art shape description scheme

Effective
Efficient
Flexible
Robust
Invariant
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Contributions

Statistical Similarity Learning

A score fusion approach with supervision

A first application in 3D shape retrieval

Independent of description modality
→ Applicable to any type of retrieval problem

Satisfactory performance in different protocols
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Perspectives on DBF

Extending invariant matching to arbitrary rotations

Parametric density estimation

Information-theoretical analysis of local surface features
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Application to other description schemes

Non-linear scoring functions

DCG-based criteria
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