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Abstract We introduce a similarity learning scheme to im-
prove the 3D object retrieval performance in a relevance
feedback setting. The proposed algorithm relies on a score
fusion approach that linearly combines elementary similar-
ity scores originating from different shape descriptors into a
final similarity function. Each elementary score is modeled
in terms of the posterior probability of a database item be-
ing relevant to the user-provided query. The posterior para-
meters are learned via off-line discriminative training, while
the optimal combination of weights to generate the final sim-
ilarity function is obtained by on-line empirical ranking risk
minimization. This joint use of on-line and off-line learn-
ing methods in relevance feedback not only improves the
retrieval performance significantly as compared to the to-
tally unsupervised case, but also outperforms the standard
support vector machines based approach. Experiments on
several 3D databases, including the Princeton Shape Bench-
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mark, show also that the proposed algorithm has a better
small sample behavior.
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1 Introduction

There exist two major research problems concerning the de-
sign of content-based multimedia retrieval systems. In the
first problem, one is concerned with finding robust represen-
tation schemes describing the content of multimedia objects
in terms of compact surrogates. In the context of 3D objects,
content description is synonymous to 3D shape descrip-
tion. Several effective and efficient description algorithms
have been proposed in the last decade (Bustos et al. 2005;
Tangelder and Veltkamp 2008) and promising performance
results have been obtained on standard benchmarks (Akgül
2007; Akgül et al. 2009; Vranic 2004). In the second prob-
lem, one seeks computational similarity measures between
descriptors that well approximate the semantic similarity be-
tween objects, based on the grounds of user requirements
and perceptual judgments. This second issue constitutes the
main focus of the present paper. Specifically, we propose
novel similarity learning algorithms for 3D object retrieval
(3DOR) and test them against existing ones.

The common denominator of the 3DOR algorithms dis-
cussed in this paper is their reliance on the relevance feed-
back mechanism (Datta et al. 2008; Smeulders et al. 2000;
Zhou and Huang 2003). In many multimedia retrieval in-
stances, relevance feedback has proven to be effective in de-
creasing the semantic gap, that is, the discrepancy between
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Table 1 A condensed taxonomy of relevance feedback algorithms

Category References

Query modification, heuristic feature
re-weighting

Huang et al. (1997), Nastar et al. (1998), Peng et al. (1999), Picard et al. (1999), Porkaew et al.
(1999), Rui et al. (1998), Santini and Jain (2000)

Subspace-based feature re-weighting Ishikawa et al. (1998), Rui and Huang (2000), Schettini et al. (1999), Zhou and Huang (2001)

Density estimation and clustering based Chen et al. (2001), Laaksonen et al. (1999), Wu et al. (2000)

Probabilistic (Bayesian) Giacinto and Roli (2004), Vasconcelos and Lippman (1999, 2000)

Discriminative learning based Chen et al. (2001), Wu et al. (2000), Guo et al. (2002), Tao et al. (2006), Tieu and Viola (2000),
Tong and Chang (2001), Zhang et al. (2001)

the computational description of the content and its seman-
tic class (Smeulders et al. 2000). Relevance feedback (RF) is
an interactive scheme that makes the user an integral part of
the retrieval process. Many different implementations have
been proposed since its first appearance in the text retrieval
domain (Rocchio 1966). Relevance feedback algorithms re-
quire the user to label a few presented database items as
relevant or irrelevant to the query. The positively (relevant)
and negatively (irrelevant) marked items together reflect the
user’s preferences and serve as high-level information that
will be used by a learning algorithm to refine the search re-
sults. Datta et al. (2008) and Zhou and Huang (2003) provide
relatively comprehensive reviews of relevance feedback al-
gorithms in image retrieval. A condensed taxonomy derived
from (Datta et al. 2008) and (Zhou and Huang 2003) is given
in Table 1 along with sample references. Note that this tax-
onomy is by no means exhaustive and there are no clear cut
boundaries between the branches.

Discriminative learning based relevance feedback meth-
ods (Chen et al. 2001; Wu et al. 2000; Guo et al. 2002;
Tao et al. 2006; Tieu and Viola 2000; Tong and Chang 2001;
Zhang et al. 2001) are of particular importance to our work.
These methods have gained prominence in recent years,
mainly because of powerful statistical classification algo-
rithms, such as support vector machines (SVM), decision
trees and boosting methods (see Hastie et al. 2001 for the
technical details of these methods). In this paradigm, the
system first learns a classifier between positive and nega-
tive items provided as a feedback by the user. The classifier
can then rank all the database items with respect to their rel-
evance to the query.

In the present work, we investigate two different ap-
proaches that fall in this discriminative learning based cat-
egory. The first one is the popular SVM-RF approach that
has already been successfully employed for general image
retrieval (Chen et al. 2001; Guo et al. 2002; Tao et al. 2006;
Tong and Chang 2001; Zhang et al. 2001). In the 3DOR
context, we are aware of only two articles that employed
SVM-RF for comparative performance analysis (Leifman et

al. 2005; Novotni et al. 2005). In its basic form, SVM-RF
minimizes the classification error using the labeled items to
learn a (possibly non-linear) decision boundary between the
positive and negative classes. Once the decision boundary
is learned, the distance of the remaining database items to
the boundary can serve as a similarity measure for the next
retrieval round. The underlying assumption here is that the
farther an item is from the boundary, the more confident we
should be about its predicted label (positive or negative).
In Sect. 2, we provide more details on the variants of this
scheme that appeared in the literature.

The main contribution of this work is a score fusion (SF)
approach to relevance feedback, which we abbreviate as SF-
RF. We compare the performance of our proposed scheme
against SVM-RF, which is well-established and documented
in the literature. Although the two approaches are philosoph-
ically similar to each other (they are both based on discrimi-
native learning), SF-RF differs from SVM-RF in several as-
pects. SF-RF scheme starts with the same kind of feedback
inputs from the user as SVM-RF, but then it tries to directly
find a similarity function based on the minimization of the
empirical ranking risk (Clémençon et al. 2008), which is de-
fined simply as the number of incorrectly ranked database
items with respect to their similarity to the query. We for-
mulate the final similarity function as a linear combination
of elementary similarity scores. In our work, an elementary
similarity score corresponds to the posterior probability of
a database item being relevant to the user-provided query,
given the distance between their respective descriptors. This
score fusion scheme (Akgül et al. 2008) has several favor-
able properties:

• The proposed score fusion algorithm (SF-RF) minimizes
the ranking risk (cf. Sect. 3), which we consider as a more
suitable optimization criterion for the retrieval task than
the classification error, defined as the total number of the
relevant database items that are classified as irrelevant and
of the irrelevant database items that are classified as rele-
vant. Note that we derive the relevance relations between
query and database items from the available ground truth
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class information, as explained in Sect. 6.2. To the best
of our knowledge, this is the first work in the visual data
retrieval domain using ranking risk minimization.

• We employ an explicit similarity model whose parame-
ters are rigorously estimated by optimization (cf. Sects. 3
and 4). In this sense, the algorithm does not need a grid
search to tune its parameters, such as the kernel width in
non-linear SVM learning. Furthermore, the model is lin-
ear in elementary similarities, thus scalable to large data-
bases.

• We convert distances between descriptors into posterior
probabilities, which allow us to incorporate prior knowl-
edge about individual discriminative powers of different
descriptors and/or components of a descriptor (cf. Sects. 4
and 5.3). Furthermore, the resulting [0,1]-probability
scale can be conveniently interpreted as a similarity scale,
where the unit value corresponds to the highest degree of
similarity.

• It is also possible to extend the algorithm to no-feedback
situations with off-line learning (cf. Sect. 6.6).

• The algorithm is generic in the sense that it can be
used with any type of shape descriptor once a match-
ing score that measures the similarity between shapes is
available. Consequently, a vector-based descriptor repre-
sentation is not necessary and the algorithm can work for
example with graph-based descriptors without modifica-
tion, as long as matching scores between graphs are pro-
vided.

We report the retrieval performance of these two schemes
(SVM-RF and SF-RF) on four different 3D object data-
bases (cf. Sect. 6.1), including the Princeton Shape Bench-
mark (PSB) (Shilane et al. 2004). On PSB, Novotni et al.
(2005) have shown that SVM-RF with 3D Zernike descrip-
tors is valuable for 3DOR and outperforms other relevance
feedback approaches. In the present work, we show that
even better results can be obtained with score fusion-based
relevance feedback via ranking risk minimization. While
our baseline shape description is the density-based frame-
work (Akgül 2007; Akgül et al. 2009) (cf. Sect. 5), any
other scheme with state-of-the-art performance could also
be used.

The paper is structured as follows. In the next section,
we describe the SVM-RF approach, discuss its limitations
and point to its variants proposed in the relevance feed-
back literature. Sections 3 and 4 embody our major con-
tributions in this work. In Sect. 3, we present our rank-
ing risk minimization-based score fusion approach in de-
tail. In Sect. 4, we show the derivation of the relevance
posteriors using pairs of descriptors. In Sect. 5, after pro-
viding the main lines of our chosen 3D shape description
methodology, the density-based framework (Akgül 2007;
Akgül et al. 2009), we explain its use in the context of rele-
vance feedback-based retrieval. In Sect. 6, we evaluate com-

paratively the two relevance feedback algorithms, the pre-
viously proposed SVM-RF and our contribution SF-RF, on
PSB and other popular 3D object databases. In Sect. 7, we
discuss our findings and draw conclusions.

2 SVM Based Relevance Feedback

One of the earliest uses of SVM in relevance feedback is
described in (Zhang et al. 2001) and its variants can be
found in (Chen et al. 2001; Guo et al. 2002; Tao et al. 2006;
Tong and Chang 2001). Let Q and X stand for the query
and database items respectively and let the indicator vari-
able y ∈ {−1,+1} encode the relevance relation between
Q and X. Learning is carried out using a training set
{(x(m), y(m))}Mm=1, provided by the user to start the relevance
feedback process, where x(m) ∈ R

p denotes the descriptor
vector of the mth labeled database item X(m), and y(m) its
relevance label. The SVM algorithm aims at finding a de-
cision function S(x) for the test vector x in the form be-
low, in order to maximally separate the positive and negative
classes:

S(x) =
M ′∑

m′=1

αm′y(m′)K(x,x(m′)) + b (1)

where the index m′ = 1, . . . ,M ′ ≤ M runs through the so-
called support vectors, that is, the training vectors x(m′) that
lie within a prescribed margin from the decision bound-
ary. The scalar variables {αm′ } are the non-zero Lagrange
multipliers arising as part of the SVM optimization and b

is the intercept of the decision function S(x). The sym-
metric form K(x,x′) is a typically nonlinear kernel func-
tion, enabling the evaluation of dot products in a higher
dimensional space than the original input space where the
vectors x live. Good references on kernel functions to en-
hance class separation in SVM are (Hastie et al. 2001;
Schölkopf and Smola 2002).

In the context of relevance feedback, one can view S(x)

as a similarity function. Standard SVM classification is per-
formed based on the sign of S(x), that is, the test vector x
is assigned to the positive class if S(x) > 0; otherwise to the
negative class. In the RF context however, we are not just in-
terested in classifying the database items but also in ordering
them as a function of their relevance to the query. Arguably,
the function S(x) itself can serve for scoring relevance like a
similarity function, that is, a high positive S(x) indicates that
the database item X is very similar to the query Q, while
a negative S(x) with high absolute value shows that X is
very distant from Q. Using the SVM output as a similarity
measure seems useful, yet lacks any theoretical justification.
There are instances where the distance to the SVM boundary
might fail to capture the true similarity between semantically
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relevant patterns (see Fig. 1 in Guo et al. 2002). The work
in (Guo et al. 2002) tries to remedy this problem by a con-
strained similarity measure, where the distance-to-boundary
is used only for negatively predicted items, while the sim-
ilarity between positively predicted items is quantified by
the Euclidean distance to the query. Nevertheless, we should
note that there are several applications where the distance-
to-boundary has been shown to provide good empirical re-
trieval performance (Tao et al. 2006; Tong and Chang 2001;
Zhang et al. 2001).

Another limitation of the basic SVM-RF approach is
due to differences between positively and negatively labeled
items. In general, positive items are compactly clustered in
the feature space, but this is usually not the case for nega-
tive ones, which, by nature, can be anything irrelevant to the
query. In other words, it is much harder to learn the nega-
tive class. The naive solution would be using a much larger
set of negative items for SVM learning, but then the deci-
sion boundary would be shifted towards the “center” of the
negative class, in which case, as pointed out in (Tao et al.
2006), many irrelevant (negative) test items would lie on the
wrong side of the boundary, hence they would be misclassi-
fied as relevant. The approach proposed in (Chen et al. 2001)
deals with this issue by a one-class-SVM learned using only
positive items at the expense of valuable information con-
tained in the negative ones. The work in (Tao et al. 2006)
follows an asymmetric bagging strategy to remedy the im-
balance between positive and negative sets. The final deci-
sion function is obtained by averaging several SVM classi-
fiers, each trained with the same positive set X + but with a
different set X − of randomly sampled negative items, such
that |X +| = |X −| in each lot. Random sampling is an es-
sential component of bagging, which is a variance reduction
technique (see Hastie et al. 2001 for further details). In ad-
dition to enhancing the stability of the final classifier, it also
constitutes a computationally more convenient alternative to
clustering.

All these enhancements certainly improve the basic
SVM-RF but they remain as variations on a theme because:

• No similarity model is explicitly available for optimiza-
tion.

• They all minimize the classification error in the hope that
this will also work well for retrieval where we are rather
interested in ranking the database items as a function of
their relevance.

In the following two sections, we present an approach that
directly tackles both of these fundamental issues.

3 Score Fusion Based Relevance Feedback

Consider the problem of ranking two generic database items
X and X′ based on their relevance to a query Q. Suppose

also that we have access to K different elementary similar-
ity functions sk(X,Q), each reflecting a distinct geometrical
and/or topological commonality between the database items
and the query. In our context, elementary similarity func-
tions arise from shape descriptors of different nature and/or
from different component sets of the same descriptor. These
are discussed in Sect. 4.

In 3D retrieval problems, when two database items X and
X′ are compared in terms of their similarity to a query Q,
the more similar item should be ranked higher than the
less similar one. Otherwise, the pair (X,X′) is said to be
an incorrectly ranked pair of database items. Obviously, an
ideal similarity measure should score higher for similar pairs
(X,Q) as compared to less similar ones. Putting together the
elementary scores in a vector form as s = [s1, . . . , sK ] ∈ R

K ,
we can define our objective as building a scalar similarity
function S(X,Q) = 〈w, s〉, where w = [w1, . . . ,wK ] ∈ R

K

is the weight vector. We expect S(X,Q) to assign higher
scores to more relevant items, i.e., it should satisfy the fol-
lowing property:

S(X,Q) > S(X′,Q)

if X is more relevant to Q than X′,
S(X,Q) < S(X′,Q) otherwise,

(2)

where ties are arbitrarily broken. As usual, we encode the
relevance of X and X′ to Q by indicator variables y and y′
respectively. Recall that y = +1 means that X is relevant
to Q, while y = −1 means that it is not relevant. Thus, the
above property reads as:

S(X,Q) > S(X′,Q) if y − y′ > 0,

S(X,Q) < S(X′,Q) if y − y′ < 0.
(3)

The function S(X,Q) must subsume the similarity infor-
mation residing in the individual scores sk in order to em-
ulate the ideal similarity notion between objects, hence to
achieve a better retrieval performance. Given the linear form
S(X,Q) = 〈w, s〉, we formulate the score fusion problem as
finding a weight vector w, which is optimal according to
the empirical ranking risk (ERR) criterion. ERR is defined
as the number of incorrectly ranked pairs of database items
with respect to a query Q. Given a set of items {X(m)}Mm=1,
we can write this criterion formally as:

ERR(S;Q) = 2

M(M −1)

∑

m<n

I{(S(X(m),Q)−S(X(n),Q))

· (y(m) − y(n)) < 0} (4)

where I{·} is the 0–1 loss, which is one if the predicate
inside the braces is true and zero otherwise. ERR simply
counts the number of wrongly ordered database item pairs. If
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Table 2 Algorithm 1: learning the ranking weights (on-line)

Given a query Q, a set of labeled database items {X(m), y(m)}Mm=1 provided by the user and K different basic similarity functions sk(X,Q).

(1) Calculate a score vector s(m) ∈ R
K for each (X(m),Q)-pair.

(2) Identify the pairs of labels (y(m), y(n)) such that y(m) − y(n) �= 0.
(3) Construct the score difference vectors v(m,n) and their rank indicators z(m,n).
(4) Run the SVM algorithm to learn the weight vector w ∈ R

K , using the derived training set {(v(m,n), z(m,n))}m<n ⊂ R
K × {−1,+1}.

S(X(m),Q) < S(X(n),Q) but y(m) > y(n), the scoring func-
tion S(.,Q) has assigned (wrongly) a higher score to X(n)

than to X(m), while X(m) is relevant to Q but X(n) is not.
Thus the scoring function has made an error in ranking X(m)

and X(n) with respect to the query and ERR should be incre-
mented by one. Such errors are naturally undesirable and our
task is to find a scoring function (or more appropriately its
parameters w) so that the number of incorrectly ranked pairs
is as small as possible.

The trick to minimize ERR is to identify (4) as the empir-
ical classification risk in a different domain. We should first
introduce another indicator variable z ∈ {−1,0,+1} such
that z = (y − y′)/2. This leads to the following observation:

z =
{+1 x should be ranked higher than x′,

−1 x should be ranked lower than x′.

Note that when z = 0, i.e., if database items X and X′ have
the same relevance label, we can decide arbitrarily. Corre-
sponding to each non-zero z, we define a score difference

vector v �= s − s′, i.e., the difference between the score vec-
tors s and s′ of database items X and X′ respectively. With
this new notation and writing the scoring function S(.,Q)

explicitly in terms of its parameters w, (2) now reads as

ERR(w;Q) = 2

M(M − 1)

∑

m<n

I{z(m,n)〈w,v(m,n)〉 < 0} (5)

where the index pairs (m,n) correspond to database item
pairs (X(m),X(n)) with different relevance labels, that is,
z(m,n) is either +1 or −1. Thus, we have converted ERR
written in terms of score vectors s and relevance indicators
y (see (4)) into an empirical classification error written in
terms of score difference vectors v and rank indicators z

(see (5)). The problem of finding the parameter vector w of
the scoring function S(.,Q) is now identical to binary clas-
sification of the score difference vectors. We can employ the
SVM algorithm in a straightforward way, however with the
interpretation that the weight vector learned by SVM in the
score difference domain can directly be used to evaluate the
scoring function at the next retrieval round. The training al-
gorithm to learn the parameter w is summarized in Table 2.

The computational complexity of this ranking algorithm
is quadratic in the number of marked items M , in contrast
to the standard SVM learning, which has linear complex-
ity (excluding the number of required operations in solving

the associated optimization problem). While this might be a
disadvantage for large M in general, we did not run into any
practical difficulty in the particular relevance feedback con-
text because M should be kept small anyway for user con-
venience. We illustrate the complexity of Algorithm 1 with
a typical relevance feedback case where M = 16 and the
number of positive and negative instances are equal (M+ =
M− = 8). Note that in this example, SVM-RF should learn
the decision function with a training set of size M = 16. For
ranking on the other hand, the total number of the pairs of
relevance indicators (y(m), y(n)) such that y(m) − y(n) �= 0,
hence the number of training score difference vectors, is 64.
On-line learning with so few training vectors is computa-
tionally feasible with standard SVM packages such as Lib-
SVM (Chang and Lin 2001). In fact, we see this quadratic
increase in the size of the training set as an advantage of
ranking over classification because the relevance informa-
tion provided by the user is exploited more efficiently.

4 Relevance Posterior as an Elementary Similarity
Function

In this section, we elicit our elementary similarity func-
tions modeled in terms of posterior probabilities. Sup-
pose that a query Q and a database item X are each de-
scribed by K descriptors {Qk}Kk=1 and {Xk}Kk=1 respectively.
Suppose also that we are able to measure the dissimilar-
ity between these descriptors via scalar-valued functions
dk(Xk,Qk) ∈ [0,∞). We intentionally avoid the vector no-
tation qk ∈ R

p and xk ∈ R
p for the descriptors in order to

emphasize that this approach is generic. To clarify, if Qk

and Xk were graphs, dk(., .) would be a graph matching dis-
tance; if they were vectors, we could use any Minkowski
metric of the form dk(xk,qk) = ‖xk − qk‖. They can even
be scalars qk ∈ R and xk ∈ R, e.g., the kth entry of a high-
dimensional descriptor vector, in which case the absolute
difference dk(xk, qk) = |xk − qk| would serve the purpose.

We can directly use the plain dissimilarity values
dk(Xk,Qk) to learn a weighted dissimilarity function
D(X,Q) = ∑

k wkdk(Xk,Qk) via ranking risk minimiza-
tion. The trick to do this is in fact trivial and we can obtain
an algorithm as in Sect. 3 by just changing the polarities of
the expressions in (2) and (3). However, we conjecture that
using the posterior probability of positive relevance given
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Table 3 Algorithm 2: learning the posterior model (off-line)

Given a training set of N descriptors {X(n)
k }N,K

n=1,k=1, the corresponding set of pairwise relevance labels Y = {y(m,n)} ∈ {−1,+1}N×N , dissimi-
larity functions dk(., .), k = 1, . . . ,K .

For all k = 1, . . . ,K:

(1) Calculate the set Dk = {d(m,n)
k = dk(X

(m)
k ,X

(n)
k )} ∈ [0,∞)N×N

(*) Note that y(m,n) =
{

+1 if X(m) is relevant to X(n)

−1 otherwise

(**) To each d
(m,n)
k , there is an associated relevance label y(m,n) ∈ {−1,+1}.

(2) Sample and estimate T times. For t = 1, . . . , T :

• Randomly choose two equally sized subsets Y + and Y − of Y , consisting of only positive and only negative relevance labels respectively.
Construct the corresponding dissimilarity sets D+

k and D−
k .

• Input the positive and negative sets {(D+
k , Y +)} and {(D−

k , Y −)} to the algorithm in (Lin et al. 2007) to estimate A
(t)
k and B

(t)
k .

(3) Ak ← Average(A(t)
k ) and Bk ← Average(B(t)

k ).

a query and a database item as a similarity measure is a
better approach than using plain distances as it allows us
to incorporate some prior knowledge on pairwise relevance
relationships into the retrieval process. Formally, our ele-
mentary similarity functions sk(Xk,Qk) have the following
form:

sk(Xk,Qk) = P(y = 1|Xk,Qk) ∼ P(y = 1|dk(Xk,Qk)).

(6)

Equation (6) conveniently models the relevance informa-
tion carried by the descriptor pair (Xk,Qk) via a map-
ping from the scalar-valued dissimilarity dk(Xk,Qk) to the
[0,1]-probability scale. Here dk(Xk,Qk) can be viewed as a
plausible approximation to the given information, since we
are solely interested in the affinity between the descriptors
Xk and Qk . In order to concretize this idea, we have to deter-
mine the explicit form of the posterior probability. We find
the following logistic model flexible:

P(y = 1|dk(Xk,Qk)) ∝ 1

1 + exp(Akdk(Xk,Qk) + Bk)
, (7)

where Ak and Bk are model parameters to be estimated from
data. In choosing the posterior model in (7), we are inspired
by Platt’s work (Platt 1999) on mapping scalar SVM outputs
into probabilities. The above logistic model is flexible be-
cause it does not make any distributional assumption about
the dissimilarity values. The parameters Ak and Bk can be
estimated by off-line discriminative training as given in Ta-
ble 3. More details about the objective function and the al-
gorithm to optimize the model in (7) can be found in (Platt
1999) and (Lin et al. 2007) respectively.

The randomization in step (2) of Algorithm 2 is reminis-
cent of the asymmetric bagging approach in (Tao et al. 2006)
and aims at remedying the imbalance between the sizes of

positive and negative sets. Though, we must emphasize that
the learning of the posterior model is performed only one
time on a representative training set of objects in an off-line
manner. Note also that we repeat this procedure for each of
the available K descriptors. Once the posterior model para-
meters {(Ak,Bk)}Kk=1 are available, our full similarity model
reads as

S(X,Q) =
K∑

k=1

wk

1 + exp(Akdk(Xk,Qk) + Bk)
, (8)

where the weights {wk}Kk=1 are determined using the Algo-
rithm 1 (see previous section) during the on-line relevance
feedback stage.

5 3D Shape Description

5.1 The Density-Based Framework

For shape description, we employ the density-based frame-
work (DBF), which has a retrieval performance compara-
ble to other state-of-the-art methods (Akgül et al. 2009).
In DBF, the descriptor of a 3D object is derived from the
probability density function (pdf) of a multivariate local fea-
ture computed on the surface of the object. Specifically, the
vector of pdf values obtained by kernel density estimation
(KDE) becomes the shape descriptor. In (Akgül 2007), the
discriminative power of several multivariate surface features
within DBF has been investigated on different 3D object
databases. Three of the DBF descriptors are particularly in-
teresting:

• The radial descriptor is the pdf-vector of a surface point’s
normalized coordinates at various distances from the ob-
ject’s center of mass.
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Fig. 1 DCG vs. NN
performance plot of 3D shape
descriptors on the PSB test set
(Shilane et al. 2004) (see
Sect. 6.2 for the definitions of
DCG and NN performance
measures; markers indicate
methodological categories, see
Akgül et al. 2009 for details and
the references therein)

• The t-plane descriptor is the pdf-vector of the local sur-
face normal at various distances from the object’s center
of mass.

• The sec-order descriptor is the pdf-vector of a multivari-
ate local feature consisting of shape index (a function of
principal curvatures) and radial-normal alignment at var-
ious distances from the object’s center of mass.

As usual, a query object Q and a database object X can be
compared by evaluating the distance between their vector-
based descriptors q and x. For instance, the distance values
d(xradial,qradial) = ‖xradial − qradial‖ can be used to sort
the database items X based on their radial similarity to the
query Q. In order to benefit from different types of shape in-
formation carried by density-based descriptors, we can sim-
ply sum their corresponding distance values. Note that this
elementary score fusion is unsupervised and does not in-
volve any statistical learning. The retrieval performance of
DBF with the unsupervised fusion of the above descriptors
on PSB test set (907 objects in 92 classes) is illustrated in
Fig. 1 with other state-of-the-art descriptors (see Sect. 6.2
for the definitions of DCG and NN performance measures;
markers indicate methodological categories, see Akgül et
al. 2009 for details and the references therein). We see that
DBF not only outperforms a great portion of descriptors but
is also on a par with two well-known highly effective ap-
proaches: the hybrid DSR descriptor (Vranic 2004) and the
concrete radialized spherical projection descriptor (CRSP)
(Papadakis et al. 2007).

The good performance of DBF can be explained by the
following facts: (i) all the available local surface informa-
tion up to second order is exploited within the KDE set-
ting; (ii) KDE copes with measurement uncertainties due
to small pose normalization errors, small shape variations
and/or mesh degeneracies; (iii) invariance against coordinate
axis mislabelings and mirror reflections is achieved by tak-
ing the minimum distance between two descriptors over the
whole set of coordinate axis relabelings and mirror reflec-
tions (Akgül et al. 2009).

Fig. 2 Three airplane models after PCA-based pose normalization:
major axes are correctly found but the front of the fuselage of the right-
most model is in the opposite direction

5.2 Descriptor Alignment

Since pose invariance contributes critically to the success of
DBF, we briefly explain it here (see Akgül et al. 2009 for
further details). Our radial and t-plane descriptors depend
on the particular coordinate frame in which the 3D object
is placed. Consequently, if two 3D objects to be compared
are not properly aligned with respect to each other, a spuri-
ously large distance between descriptors might occur. That
is, transformations such as rotations, reflections, and label-
ing of the coordinate axes might eclipse semantic similar-
ities. PCA-based methods (Vranic 2004) partially resolve
this pose normalization issue by finding the directions of
the three major object axes. Axis labels can be assigned ac-
cording to the decreasing rank of the eigenvalues found by
PCA, while polarities can be estimated by moment-based
approaches as in (Vranic 2004). However, there still remain
ambiguities about the axis labels and polarities, since this
scheme does not always yield consistent results, as illus-
trated in Fig. 2. We find that minimizing the distance be-
tween two descriptors over all possible axis relabelings and
reflections constitutes a better alternative, which is also com-
putationally feasible within DBF. The radial and t-plane de-
scriptors enjoy the convenient property that a given trans-
formation � changing the axes of an object (by a relabeling
and/or reflection) corresponds to a unique permutation π of
the descriptor entries. In other words, if the descriptor of an
object O is x = [xk], then the descriptor of its transformed
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version �(O) becomes π(x) = [xπ(k)]. Thanks to this per-
mutation property or pairings �(k) ↔ π(k); k = 1, . . . ,48,
all the 48-transformations can be implemented rapidly with-
out the need to recompute the descriptors. In retrieval, we
make use of this advantage of DBF either to derive an invari-
ant distance measure between descriptors or to align each
database object with respect to the query.

5.3 DBF in Relevance Feedback

In the SVM-RF context, we simply concatenate shape de-
scriptors from different modalities, the radial, t-plane and
sec-order descriptors into a single vector. On the other hand
in SF-RF, we need elementary similarity scores to be lin-
early combined via ranking risk minimization; these ele-
mentary scores are in turn generated using segments of
the descriptor vectors, which we call chunks. Let x ∈ R

p

be one of the radial, t-plane and sec-order descriptor vec-
tors. We can write x in terms of the concatenation of K

descriptor chunks of equal size xk ∈ R
p′

such that x =
[x1, . . . ,xk, . . . ,xK ] and p = Kp′. We call this operation as
descriptor chunking. Each descriptor chunk provides its dis-
similarity value dk = ‖xk − qk‖, which can be mapped to a
similarity score sk via the posterior model sk = P(y = 1|dk)

(cf. Sect. 4). For instance, if we have p = 1024 as the origi-
nal descriptor dimension and p′ = 128 as the chunk dimen-
sion, we obtain K = 8 scores that will be fed to the subse-
quent fusion stage where a distinct weight wk for each of the
individual scores is learned by ranking risk minimization. In
the limit p′ = 1, we obtain as many scores as the original
dimension p of the descriptor, i.e., K = p.

6 Experiments

6.1 3D Object Databases

In this work, we have experimented with four different 3D
object datasets. All of the objects are complete 3D models
given by triangular meshes. These datasets differ substan-
tially in their semantic content as discussed below.

The Princeton Shape Benchmark (PSB) is a publicly
available database containing 1814 models, categorized into
general classes such as animals, humans, plants, household
objects, tools, vehicles, buildings, etc. (Shilane et al. 2004).
Its classification is induced by functionality as well as by
form. Accordingly, there are many instances where unsu-
pervised shape description methods might fail to resolve se-
mantic ambiguities due to high within-class variation. It can
be conjectured that PSB is one of the 3D datasets where rel-
evance feedback schemes can be particularly effective. The
dataset was released by the Princeton group as two equally
sized subsets, called training set and test set. In the 3D re-
trieval community, it is now a common practice to use the

training set (90 classes) for tuning the parameters involved
in the computation of a particular shape descriptor, and re-
port the retrieval results on the test set (92 classes) using the
tuned parameters. Only 21 classes are common to both sets,
and the remaining classes occur in one or the other set, but
not in both. The class sizes are somewhat imbalanced: there
are small classes consisting of only five items and large ones
containing up to 50 items. For the sake of clarity, we would
like to point out that the naming convention of the sets in
PSB is different from the one adopted in the context of sta-
tistical classifiers where the term “training set” is reserved
for the set used for learning the classifier and the term “test
set” is reserved for actually testing the classifier.

The Sculpteur Database (SCU) is a private database con-
taining over 513 models corresponding to mostly archaeo-
logical objects residing in museums (Goodall et al. 2004).
SCU consists of 53 categories of comparable set sizes, in-
cluding utensils of ancient times such as amphorae, vases,
bottles, etc.; pavements; and artistic objects such as human
statues (part and whole), figurines, and moulds. SCU classes
are in general more homogeneous compared to PSB but dis-
criminating the vases from some of the amphorae might still
be difficult unless high level information is incorporated in
the search process.

The SHREC’07 Watertight Database (SHREC-W) was
released for the Watertight track of the Shape Retrieval Con-
test (SHREC) in 2007 (Giorgi et al. 2007). It consists of
400 watertight meshes of high resolution, classified into 20
equally sized classes such as human, cup, glasses, octopus,
ant, four-legged animal, etc. Classification in SHREC-W is
largely induced by topological equivalences.

The Purdue Engineering Shape Benchmark (ESB) is
another database that was used in the SHREC’07 event
and consists of 865 models representing engineering parts
(Jayanti et al. 2006). This dataset is organized based on
a ground truth classification with two levels of hierarchy.
Overall there are three super-classes, namely, flat-thin ob-
jects, rectangular-cubic prisms, and solids of revolution,
which are further categorized into 45 classes (we consider
this base classification in our evaluations). It is particularly
interesting to see the performance of relevance feedback on
such a database, since CAD offers an important application
domain for content-based 3D shape retrieval.

6.2 Evaluation Methods

We test our algorithms in what we call the two-round pro-
tocol, which can be viewed a particular form of relevance
feedback. In the first round, the retrieval machine returns a
ranked list of database objects using an unsupervised simi-
larity measure obtained from a set of 3D shape descriptors
(cf. Sect. 5). The user is then asked to mark M items start-
ing from the top of the list as either relevant (y = +1) or
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irrelevant (y = −1). The second round proceeds either by
the SVM-RF scheme (cf. Sect. 2) or the score fusion based
approach (cf. Sect. 3), both using the set of M items as the
training set. Standard relevance feedback simulations pro-
ceed in multiple iterations (usually much more than one).
New labeled items are added to the training set, which pro-
gressively grows and gets semantically more expressive af-
ter each round. It is naturally desired that the algorithm re-
turn satisfactory results after a small number of iterations.
The two-round protocol as considered here is actually stan-
dard relevance feedback with a single iteration. In our ex-
periments, we let M to vary from as small as 4 up to 64
with increments of 4. Note that, concerning the size of the
training set, a large M is practically equivalent to allowing
a large number of iterations in standard relevance feedback;
the only difference is that, in the two-round protocol, the
training set is formed in one shot but not as a result of a pro-
gressive accumulation. While standard relevance feedback
can provide a more detailed analysis of the recall capabil-
ity through iterations; from a benchmarking perspective, we
think that the two-round protocol is a more direct way of as-
sessing the behavior of the algorithms under a small training
set size.

The user behavior is simulated using the available
ground-truth class information. Accordingly, for a given
dataset, we consider each 3D model as a query and the re-
maining models as database items (this is basically a leave-
one-out procedure). When it comes to generating the rele-
vance label of a database item (from the set of the first M

items returned after the first round), we compare the class
names (or tags) of the query and the database item. If the
class names match, we set the relevance label to +1 (rel-
evant); otherwise we set it to −1 (irrelevant). This simu-
lation model assumes that the user’s judgments are in line
with common knowledge that generated the ground truth
information associated with the considered 3D datasets. To
give an example, it is natural to state that a 3D object tagged
as horse is relevant to another horse object. With this user
model, it is also possible to consider tag hierarchies (e.g.,
for retrieving four-legged animal objects), but we do not
pursue this kind of analysis as it lies beyond the purpose of
the present work.

In our comparative analyses, we use the nearest-neighbor
(NN), precision-recall curve and discounted cumulative
gain (DCG) performance measures. NN is simply the per-
centage of the correct matches among the closest ones. For a
fixed number N of retrieved items, recall measures the ratio
of correct matches with respect to the size of the query class
and precision measures the ratio of correct matches within
the N retrieved items. By varying N , one obtains a series
of precision-recall points, each of which corresponds to a
fixed value of N . These points are then interpolated and dis-
played in terms of the so-called precision-recall curve. DCG

is a statistic that weights correct results near the front of the
list higher than those appearing later. It provides a compact
summary of the overall retrieval performance. To calculate
this measure, the ranked list of retrieved objects is converted
to a list, where an element Ln is one if the nth object is in
the same class as the query and otherwise it is zero.

Discounted cumulative gain at the nth rank is then de-
fined as

DCGn =
{

Ln, if n = 1,

DCGn−1 + Ln

log2 n
, otherwise.

The final DCG score for a query in class C is the ratio
of DCGNmax to the maximum possible DCG that would
be achieved if the first |C| retrieved elements were in the
class C , where Nmax is the total number of objects in the
database. DCG has normalized values in the range [0,1] and
higher values reflect better performance. In order to give the
overall performance on a database, the DCG values for each
query are averaged to yield a single average performance
figure.

6.3 The Effect of Descriptor Chunking in Score Fusion

We investigated the effect of descriptor chunking (cf.
Sect. 5.3) with our score fusion scheme on plain distances.
We varied the number of chunks Krad,Ktp , and Ksec from
1 (where K = 3 in (8)) up to the respective descriptor di-
mensions p, which were 1024, 1024, and 576 for radial,
t-plane and sec-order descriptors (where K = 2624 in (8)).
DCG profiles in the two-round protocol on PSB training
set (907 objects in 90 classes) are shown in Fig. 3 for sev-
eral choices of (Krad,Ktp,Ksec). Also shown with a hor-

Fig. 3 DCG profiles in the two-round protocol for several choices of
(Krad , Ktp,Ksec) using score fusion on plain distances on PSB train-
ing set. The triples on top of each curve stand for (Krad , Ktp , Ksec)
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Fig. 4 DCG profiles for score fusion using posterior-based similarities and plain distances on (a) PSB Training Set and (b) PSB Test Set

izontal line is the baseline DCG, i.e., the performance af-
ter the first round. Note that the triples appearing on top of
each curve are instances of (Krad,Ktp,Ksec) and the sum
Krad + Ktp + Ksec always gives the total number of scores
K involved in the score fusion stage. As can be clearly seen
from Fig. 3, when we increase the level of decomposition,
i.e., the number of chunks, the DCG after the second round
increases for all values of the feedback size M . Top per-
formance is obtained in the limiting case of p′ = 1, that is,
when (Krad,Ktp,Ksec) = (1024,1024,576). The chunk-
ing operation adds more degrees of freedom to score fusion,
hence induces a more flexible similarity measure adapting
itself to the given query. In other words, when p′ = 1, each
component in the descriptor vector becomes equipped with
its own adjustable weight that is estimated via ranking risk
minimization. In the subsequent experiments, we always re-
port the results corresponding to this limiting case of p′ = 1.

6.4 Posterior-Based Similarities vs. Plain Distances in
Score Fusion

In this section, we validate the conjecture that the posterior-
based similarity model is more advantageous for score fu-
sion than using plain distances. The posterior model para-
meters are learned on PSB Training Set using Algorithm 2
(cf. Sect. 4). Figure 4(a) depicts the DCG convergence pro-
files corresponding to posterior-based similarities and plain
distances on PSB Training Set. For all values of M , the score
fusion with posterior-based similarities has better retrieval
performance than with plain distances.

It is important to stress that the posterior-based approach
generalizes well to the instances that are unseen during the

posterior model learning. To confirm this, we have con-
ducted the same comparison on PSB Test Set using the pos-
terior model parameters learned on PSB Training Set. Fig-
ure 4(b) shows that score fusion posterior-based similarities
is superior on PSB Test Set as well.

6.5 Score Fusion vs. SVM-RF

In Sects. 5.3 and 5.4, we have experimentally shown that
the proposed score fusion approach attains its best perfor-
mance with descriptor chunking down to single-entry level
using posterior-based similarities. Now, we carry out a one-
to-one comparison against the standard SVM-RF scheme.
For SVM-RF, we have used the Gaussian radial basis ker-
nel K(x,x′) = exp(−ρ‖x − x′‖2), where ρ is a parameter
that was observed to drastically affect the SVM-RF per-
formance. An inappropriate selection might yield surpris-
ingly poor results. Unfortunately, as in most of the SVM
problems, training data give no prior indication about the
optimal value of this parameter. In our context, a time-
consuming grid search on PSB Training Set over a broad
range of values has revealed that ρ∗ = 200 was the best op-
tion. Regarding the choice of the regularization parameter
C in SVM optimization, we observed that several settings
(C = 0.1,C = 1,C = 10 and C = 100) provided practically
equivalent results. We set the parameter C to 10 in all cases
involving SVM optimization.

Figure 5(a) depicts the DCG profiles of the score fusion
and SVM-RF approaches on PSB Training Set. We included
two context-dependent variants of SVM-RF in the compar-
ison: SVM-RF without descriptor alignment and with de-
scriptor alignment (cf. Sect. 5.2), denoted as SVM-RF-A.
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Fig. 5 DCG profiles for score fusion, SVM-RF with descriptor alignment (SVM-RF-A) and SVM-RF without descriptor alignment on PSB
Training Set on (a) PSB Training Set, (b) PSB Test Set, (c) Sculpteur Database, (d) SHREC-W, and (e) ESB

From Fig. 5, we observe that SVM-RF without alignment

has the worst performance albeit it still enhances the first

round results as a function of M . Score fusion exhibits faster

improvement and it is markedly better for M ≤ 40, while
SVM-RF-A overtakes it slightly but only after M > 40,
showing that standard SVM-RF requires a larger training
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Table 4 DCG gains of score fusion (SF) and SVM-RF with respect to baseline performance

M = 4 M = 8 M = 16

SF SVM-RF-A SF SVM-RF-A SF SVM-RF-A

PSB Train 4.6 3.2 9.5 8.3 14.0 13.0

PSB Test 4.5 3.1 8.8 6.8 13.7 11.3

SCU 3.7 1.6 6.9 4.2 9.5 7.4

SHREC-W 1.7 1.8 3.1 3.7 6.3 6.0

ESB 1.6 0.1 3.7 2.1 6.6 4.8

Fig. 6 Precision-recall curves
for the case of M = 8 on all
databases

set than score fusion. Similar observations can be made
for other databases as can be seen from Figs. 5(b–e). Note
that in obtaining these results we always used the posterior
model parameters learned from PSB Training Set. The DCG
profiles for PSB Test Set (Fig. 5(b)) follow virtually the
same pattern as for PSB Training Set, starting from a lower
baseline. For Sculpteur (Fig. 5(c)), the break-even point
between score fusion and SVM-RF-A occurs at M = 28,
earlier than in PSB. For SHREC-W (Fig. 5(d)), where the
baseline is already very high, the profiles for score fusion
and SVM-RF-A are virtually identical. For ESB (Fig. 5(e)),
SVM-RF-A cannot surpass score fusion even for high values
of M .

Table 4 provides a closer view of the performance for
the practical small sample cases of M = 4,8, and 16. Addi-
tive DCG gains, defined as the difference between the DCG
obtained with relevance feedback and the baseline DCG, re-
veals that score fusion is markedly superior to SVM-RF-A,
except for SHREC-W where the comparison is rather in-
conclusive (DCG differences are in the order of decimals).
We complete this analysis with precision-recall curves for
the case of M = 8 on all databases. The curves displayed
in Fig. 6 corroborate the performance results measured by
DCG. On a general basis, we can state that score fusion has
better small-sample performance than SVM-RF. This aspect
makes the posterior score fusion approach more appealing
for relevance feedback because, admittedly, it is always bet-
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Fig. 7 (Color online) A sample
“biplane” query from PSB:
first-round results (top), after
SVMRF (middle), and after
score fusion based RF (bottom).
Items marked with a check sign
are relevant and items marked
with a cross sign are irrelevant
to the query

ter to demand less from the user. Figure 7 illustrates the case
in point with a sample “biplane” query from PSB.

6.6 Score Fusion without User Feedback

In this section, we show the applicability of our score fusion
scheme in no-feedback situations. Recall first that we have
a linear similarity model given by S(X,Q) = 〈w, s〉, where
X is a database item and Q is a query. In the RF context, the
parameter vector w is learned on-line using a small set of

items that are provided by the user in view of their relevance
to the query. Thus, w implicitly depends on Q and one can
view the function S(X,Q) as a locally-adaptive weighted
similarity measure. To apply our score fusion scheme to
the no-feedback case, we rely on a continuity argument and
make the following assumption: queries that are similar in
the descriptor space should induce similar weight vectors.
Accordingly, we can avoid the on-line estimation of w by
replacing it with an “approximate” version ŵ corresponding
to a training query Q̂. In this variant of score fusion, given
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Table 5 DCGs and additive DCG gains for classes shared by both PSB training and test sets

Class Baseline SF-OFF SF-ON with M = 4

biplane 91.8 99.7 +7.9 92.5 +0.7

commercial airplane 76.3 75.5 −0.8 87.5 +11.2

fighter jet 93.1 92.9 −0.2 93.4 +0.3

helicopter 63.0 74.5 +11.5 72.5 +9.5

enterprise spaceship 70.8 77.6 +6.8 77.4 +6.6

human 92.4 94.4 +2 93.5 +1.1

human (arms out) 74.3 83.6 +9.3 78.3 +4.0

sword 68.4 78.0 +9.6 66.4 −2.0

face 83.1 84.4 +1.3 88.1 +5.0

head 85.8 85.9 +0.1 89.2 +3.4

two-story home 36.8 35.6 −1.2 41.6 +4.8

city 70.0 66.3 −3.7 68.9 −1.1

dining chair 71.7 79.6 +7.9 73.3 +1.6

shelves 66.2 73.2 +7 72.2 +6

rectangular table 67.3 69.3 +2 68.4 +1.1

handgun 89.6 97.0 +7.4 97.4 +7.8

vase 42.7 41.2 −1.5 45.1 +2.4

potted plant 54.3 57.9 +3.6 60.1 +5.8

barren tree 43.1 45.5 +2.4 54.1 +11

ship 69.6 78.9 +9.3 73.3 +3.7

sedan car 95.5 93.4 −2.1 97.5 +2

AVERAGE 75.6 79.0 +3.4 78.9 +3.3

an on-line query Q and a set of training queries {Q(n)
train}

whose weight vectors {w(n)
train} have already been learned

off-line, we first identify the best matching training query by
Q̂ = arg minn dist (Q,Q

(n)
train), where the distance is evalu-

ated between the corresponding descriptors. We then fetch
the weight vector ŵ corresponding to Q̂ and return the re-
trieval results using the “approximate” similarity function
S(X,Q) = 〈ŵ, s〉.

Table 5 reports the performance of this off-line scheme,
denoted as SF-OFF in order to differentiate from the on-line
version SF-ON for 21 shape classes in PSB. In these ex-
periments, 3D models from PSB Training Set are used as
training queries, those from PSB Test Set as test queries and
the performance is evaluated using PSB Test Set base clas-
sification. The set of weights {w(n)

train} are learned off-line
by a leave-one-out procedure on the PSB Training Set, so
that at a given time, a 3D model in the set is considered as
the query and the remainder as the set of database items. To
construct the associated training set, we opted for robustness
and labeled all the database items using the available rele-
vance information (in the on-line version, this corresponds
to letting M as large as the number of all database items).
We restricted the analysis to the classes that are shared by
both PSB Training and Test Sets because of the continu-
ity assumption. In other words, we had to make sure that

there is actually a shape among the training queries, which
is semantically relevant to the test query. Without such a re-
striction, the “approximate” similarity function S(X,Q) =
〈ŵ, s〉 might be very inaccurate, since there will always be
a best-matching training query albeit semantically irrelevant
to the test query. Table 5 shows that this off-line variant of
score fusion leads to substantial improvements for the ma-
jority of the considered shape classes (a few classes suf-
fer from minor degradations). On average, an additive DCG
gain of 3.4% is obtained with respect to the baseline, equiv-
alent to the average performance of score fusion based RF
(SF-ON) with M = 4 on the considered classes.

7 Discussion and Conclusion

There is an alternative perspective to look at our score fu-
sion approach. An admittedly sound conjecture for retrieval
is that the full relevance posterior P(y = 1|{Xk,Qk}Kk=1)

would be the ideal similarity measure to decrease the se-
mantic gap that arises from semantic uncertainties and de-
scriptor imperfections. However, direct estimation of this
full relevance posterior is a difficult task as the joint di-
mension of the given descriptor information {Xk,Qk}Kk=1 is
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very high and, for any practical purpose in relevance feed-
back, available training instances are scarce. The score fu-
sion approach that we introduced in this work can be viewed
as an operational approximation to the full relevance pos-
terior. First, with descriptor chunking down to single-entry
level, the difficult problem of estimating the full relevance
posterior P(y = 1|{Xk,Qk}Kk=1) is cast into several much
simpler problems of tractable dimension, where elemen-
tary (but also much less discriminative) relevance posteriors
P(y = 1|Xk,Qk) are estimated independently with off-line
discriminative learning (cf. Sect. 4). Then, at the relevance
feedback stage, the importance (measured by the weight
wk) of each such posterior is estimated by on-line ranking
risk minimization (cf. Sect. 3). On a conceptual level, this
fusion scheme resembles boosting methods (Hastie et al.
2001), where several weak classifiers are combined into one
strong classifier with much better performance. Our main
conclusion is that the joint use of off-line and on-line learn-
ing in score fusion makes our algorithm more effective than
the prevailing SVM-RF approach, as established by exper-
iments on several 3D object databases. In particular, the
markedly better small sample behavior of score fusion is ad-
vantageous for relevance feedback-driven retrieval.

The findings of the present work also suggest that near
perfect performance on standard 3D benchmarks can be ob-
tained by combining many different shape descriptors in a
supervised setting. The current DCG performance on PSB
Test Set is already impressive, at around 80% with M = 16
marked items (∼14% more than the unsupervised base-
line obtained with density-based descriptors alone). We be-
lieve that the addition of other powerful descriptors such
as CRSP (Papadakis et al. 2007) and DSR (Vranic 2004)
would allow even further improvements, we hope above
90% DCG. Our score fusion algorithm is computationally
flexible enough to handle such extensions. Furthermore, this
flexibility calls also for other challenging multimedia re-
trieval tasks. Other research directions that we plan to pursue
in the future include generative learning of relevance poste-
riors via Bayesian modeling and extending the ranking al-
gorithm to ordinal relevance relations.
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