Computer Vision Course
Lecture 08

Feature Matching

-Geometry
_Machine l.e,runtncj

. ~CC\‘CUL\)_S
Ceyhun Burak Akgul, PhD iy ~ Signal Processing
cba-research.com _Graph Theory :

& Optimizqtuon

Photo credit: Olivier Teboul
vision.mas.ecp.fr/Personnel/teboul

Spring 2015
Last updated 22/04/2015

These slides have been adapted from James Hays’s 2014 Computer Vision course slides at Brown University.



Course Outline

Image Formation and Processing

G R G R
B G B G
G R G R
. . B G B G
Feature Detection and Matching
Feature Matching and
Multiple Views and Motion A
Geometric Transformations, Camera Calibration 4*3’,, 5

Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

CBA Research Computer Vision




Correspondence and Alignment

* Correspondence: matching points, patches, edges, or
regions across images




Overview of Keypoint Matching

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

4. Compute a local
descriptor from the
normalized region

d(f ;- f5)<T

5. Match local
descriptors

K. Grauman, B. Leibe



How do we decide which features match?




Feature Matching

* Simple criteria: One feature matches to another if
those features are nearest neighbors and their
distance is below some threshold.

* Problems:

— Threshold is difficult to set

— Non-distinctive features could have lots of close matches,
only one of which is correct



Matching Local Features

* Threshold based on the ratio of 15t nearest neighbor
to 2" nearest neighbor distance.

PDF

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

PDF for correct matches

PDF for incorrect matches

-+

*

/[

//

A

/

/

<

AN

4

-~ /.

/

X

2~

QN

S e

’
’
-
s
’
—

R i

B

TR

+

0

0.1

02 03

04 05 06 0.7 08 09
Ratio of distances (closest/next closest)

1

Lowe IJCV 2004



Fitting and Alignment

Fitting: find the parameters of a model that best fit
the data

Alignment: find the parameters of the
transformation that best aligh matched points



Fitting and Alignment

* Design challenges
— Design a suitable goodness of fit measure

* Similarity should reflect application goals

* Encode robustness to outliers and noise
— Design an optimization method

* Avoid local optima

* Find best parameters quickly



Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— lterative closest point (ICP)

* Hypothesize and test

— Generalized Hough transform
— RANSAC



Least squares line fitting

eData: (xl, yl), sy (xrp yn) t me+b
*Line equation: y, =mx; + b I ’
*Find (m, b) to minimize :
. l (xia yz)
E = Ei:](yi — mxl _b)2 >
] ) 2
o) xl 1 yl
; m . | m . 2
W [ I AR I
xn 1 yn
=y'y-2(Ap)'y +(Ap)’ (Ap)
dE
— =2A"Ap-2A"y=0
i p M Matlab:p = 2 \ v;

ATAp=ATy=p=(ATA]"'A"y

Modified from S. Lazebnik



Least squares (global) optimization

Good
e Clearly specified objective
* Optimization is easy

Bad
* May not be what you want to optimize
* Sensitive to outliers

— Bad matches, extra points

 Doesn’t allow you to get multiple good fits

— Detecting multiple objects, lines, etc.



Hypothesize and test

1. Propose parameters

— Try all possible
— Each point votes for all consistent parameters
— Repeatedly sample enough points to solve for parameters

2. Score the given parameters

— Number of consistent points, possibly weighted by distance

3. Choose from among the set of parameters

— Global or local maximum of scores

4. Possibly refine parameters using inliers



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese



Hough transform

y \ m
X
y m
@
X

Slide from S. Savarese



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Hough space

Xxcos@ +ysinf =p

Slide from S. Savarese



Hough transform - experiments

features votes

Slide from S. Savarese



Hough transform - experiments

Noisy data
- |
. .
.. ]
[ |
[ |
[ |
[ |
[ |
* [ |
features votes

Need to adjust grid size or smooth

Slide from S. Savarese



Hough transform - experiments

features votes

Issue: spurious peaks due to uniform noise

Slide from S. Savarese



_//,’
=10
=\

Image = Canny

\ ,,..//
R

o \S==E =



=

DT
faly
prit

1
- 1 . \
= N 1 )
y  BA B f
- 1 =
= (L R
N Uiy
o : iy o
m o\ A ,‘ == PMUO
= R b
), N
, Y
o] s\
B == (PR // / ~f
o~ ! /\
3 Y rf” ﬁlflv _,,
3 9 A\

C;Uﬁ:m\ L__l||?wl. (g
& e T e
f»l. \

(V)]
Q
fd
O
>
i e
oT0)
- |
o
- -
>
C
-
© |
C”
o

=73

!

s o
A




3. Hough votes = Edges




Hough transform example

7 "Image ‘ Hough Transform

http://ostatic.com/files/images/ss_hough.jpg



Finding lines using Hough transform

* Using m,b parameterization

* Using r, theta parameterization
— Using oriented gradients

* Practical considerations
— Bin size
— Smoothing
— Finding multiple lines
— Finding line segments



Hough transform conclusions
Good

* Robust to outliers: each point votes separately
e Fairly efficient (much faster than trying all sets of parameters)
* Provides multiple good fits

Bad

* Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and speed/
memory

— Can be hard to find sweet spot

* Not suitable for more than a few parameters
— grid size grows exponentially

Common applications

* Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
* Object category recognition (parameters are position/scale)



RANSAC ° o
(RANdom SAmple Consensus) : ‘ ‘ ‘
Fischler & Bolles in ‘81. “ "
@
o o °
o ® o
O ®

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC ° o
o o ®
Line fitting example O
.‘:
e ©
@ ® 0
O O

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

* Number of samples N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e )

* Number of sampled points s
— Minimum number needed to fit the model

* Distance threshold 6

— Choose 0 so that a good point with noise is likely (e.g., prob=0.95) within threshold
— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

S proportion of outliers e

N =log(1-p)/ log( (1-¢) ) s 5% 10% 20% 25% 30% 40% 50%
2 2 3 ) 6 7 11 17
3 3 4 7 9 11 19 35
4 3 ) 9 13 17 34 72
) 4 6 12 17 26 o7 146
6 4 4 16 24 37 97 293
4 4 8 20 33 54 163 588
8 ) 9 26 44 /8 272 1177

modified from M. Pollefeys



RANSAC conclusions
Good

Robust to outliers

* Applicable for larger number of objective function parameters
than Hough transform

* Optimization parameters are easier to choose than Hough
transform

Bad

 Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting multiple fits

Common applications
 Computing a homography (e.g., image stitching)
e Estimating fundamental matrix (relating two views)



How do we fit the best alighment?




Alighnment

* Alignment: find parameters of model that maps one
set of points to another

e Typically want to solve for a global transformation
that accounts for *most™ true correspondences

 Difficulties
— Noise (typically 1-3 pixels)
— Outliers (often 50%)
— Many-to-one matches or multiple objects



Parametric (global) warping

S TN L S
N
s A ¥

p=(xy)

Transformation T is a coordinate-changing machine:
P’ =T(p)

What does it mean that T is global?
— Is the same for any point p
— can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p' =Tp



Common transformations

original

Transformed

perspective



Scaling

* Scaling a coordinate means multiplying each of its components by a
scalar

* Uniform scaling means this scalar is the same for all components:

PN

X 2




Scaling

Non-uniform scaling: different scalars per component:

Y x 0.5




Scaling

* Scaling operation: X'=ax
y'=by
 Or, in matrix form:
" Ta 011
' 10 b
v

scaling matrix S




2-D Rotation

o (X, Y)

(X, ¥)

X =X cos(0) - y sin(0)
0 y' =X sin(0) + y cos(0)




2-D Rotation

Polar coordinates...
X =1 cos ()

y =rsin (¢)
X =rcos (¢ + 0)

y y,) y'=rsin (¢ + 0)

Trig Identity...

(X y) X =r cos(¢p) cos(0) —r sin(¢) sin(0)
) Yy’ =r sin(¢) cos(0) + r cos(¢) sin(0)

Substitute...
X =x cos(0) - y sin(0)
¢ y' = x sin(6) + y cos(6)




2-D Rotation

This is easy to capture in matrix form:

X' '008(6’) —sin(H)' X ]
' _sin(H) cos(H)J_ Y

\

v~
R

Even though sin(8) and cos(08) are nonlinear functions of 0,
— X’ is a linear combination of x and y
— y’is alinear combination of x and y

What is the inverse transformation?
— Rotation by -0
— For rotation matrices 1(_1 = RT



Basic 2D transformations

x' P« X X' 1 a 1lx
yv O Sy y |:yv]_ ay 1 y:|
Scale Shear
x'T [cos® —sin®][x x7T [l 0 ¢
y'| |sin® cos® ||y Y o 1 t, Jl/
Rotate Translate - -
/ -x-
x| _[a b ¢ Affine is any combination of
20 Y . .
y d e f i translation, scale, rotation,
Affine L - shear



Affine Transformations

Affine transformations are combinations of
 Linear transformations, and
* Translations
Properties of affine transformations:
* Lines map to lines
« Parallel lines remain parallel
» Ratios are preserved
» Closed under composition

I
ek
L

' a b c
]_[d e f
or
‘a b
=|d e
0 0




Projective Transformations

Projective transformations are combos of X :
« Affine transformations, and y'
- Projective warps W

Properties of projective transformations:

Lines map to lines

Parallel lines do not necessarily remain parallel
Ratios are not preserved

Closed under composition

Models change of basis

Projective matrix is defined up to a scale (8 DOF)

U

e




2D image transformations

(reference table\

translation

_—y

EE—— 4

A
y similarity projective i
Euclidean : athne

\__,,,(/

x
Name Matrix #D.O.F. | Preserves: Icon
translation [ I ‘ t L ; 2 orientation + - - -
2X.
rigid (Euclidean) [ R ’ t ]2 ; 3 lengths + - - - Q
X
similarity [ SR | t ]2 . 4 angles + - - - O
X
affine [ A ]2“ 6 parallelism + - - - D
projective [ H ]3><3 8 straight lines E|

Szeliski 2.1



Example: solving for translation

Given matched points in {A} and {B}, estimate the translation of the object

B
X.

l

v’

A
X.

1

)




Least squares solution
1. Write down objective function
2. Derived solution
a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form Ax=Db
b) Solve using pseudo-inverse or
eigenvalue decomposition




Problem: outliers

RANSAC solution B
1. Sample a set of matching points (1 pair) lB
2. Solve for transformation parameters Vi
3. Score parameters with number of inliers

4. Repeat steps 1-3 N times



Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution x? xA [t
1. Initialize a grid of parameter values ZB = ZA +
2. Each matched pair casts a vote for Vi Vi ! y

consistent values

3. Find the parameters with the most votes
4,

Solve using least squares with inliers






What if you want to align but have no prior
matched pairs?

 Hough transform and RANSAC not applicable

* Important applications

Medical imaging: match brain Robotics: match point clouds
scans or contours



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of
points

1. Initialize transformation (e.g., compute difference in
means and scale)

2. Assign each point in {Set 1} to its nearest neighbor in
{Set 2}

3. Estimate transformation parameters
— e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated
parameters

5. Repeat steps 2-4 until change is very small



Example: alighing boundaries

1.
2.

Extract edge pixels ]71..]772 and q1..q772

Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

Get nearest neighbors: for each point ll?l' find corresponding
match(i)=argmin—+; dist(pi,q/)
Compute transformation T based on matches

Warp points p accordingto T
Repeat 3-5 until convergence



Example: alighing boundaries

1. Extract edge pixels ]71..]772 and q1..q772

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point lZ?l' find corresponding
match(i)=argmin—+; dist(pi,q/)

Compute transformation T based on matches

5. Warp points p accordingto T




Problem: no initial guesses for correspondence

ICP solution v B
1. Find nearest neighbors for each point lB
2. Compute transform using matches 2
3. Move points using transform

4. Repeat steps 1-3 until convergence



Algorithm Summary

Least Squares Fit

— closed form solution
— robust to noise
— not robust to outliers

* Robust Least Squares
— improves robustness to noise
— requires iterative optimization
* Hough transform
— robust to noise and outliers
— can fit multiple models
— only works for a few parameters (1-4 typically)

* RANSAC
— robust to noise and outliers
— works with a moderate number of parameters (e.g, 1-8)

* |terative Closest Point (ICP)
— For local alignment only: does not require initial correspondences



Object Instance Recognition
1. Match keypoints to object ﬁA

n X

model >
""’W‘

Matched
keypoints

2. Solve for affine
transformation parameters

. qe Parameters
3. Score by inliers and choose

solutions with score above 4 This
threshold #lnliers | Class

oose hypothesis with max /
fc%ﬁ&a@/e threshold/




Overview of Keypoint Matching

N pixels
—

N pixels

K. Grauman, B. Leibe

dlp <

e.g. color

d(f ;- f5)<T

s

1.

Find a set of
distinctive key-
points

. Define a region

around each
keypoint

. Extract and

normalize the
region content

. Compute a local

descriptor from the
normalized region

. Match local

descriptors



Keypoint-based instance recognition

* Given two images and their keypoints
(position, scale, orientation, descriptor)

* Goal: Verify if they belong to a consistent
configuratio

Local Features,
e.g. SIFT

Slide credit: David Lowe



Finding the objects (overview)

Stored
Image

Match interest points from input image to database image
Matched points vote for rough position/orientation/scale of
object

3. Find position/orientation/scales that have at least three votes

4. Compute affine registration and matches using iterative least
squares with outlier check

5. Report object if there are at least T matched points



Matching Keypoints

 Want to match keypoints between:
1. Queryimage
2. Stored image containing the object

* Given descriptor x,, find two nearest neighbors x,, x,
with distances d,, d,

* x, matches x, if d,/d, < 0.8

— This gets rid of 90% false matches, 5% of true matches in
Lowe’s study



Affine Object Model

e Accounts for 3D rotation of a surface under

Q

orthographic projection

Ay




Affine Object Model

e Accounts for 3D rotation of a surface under
orthographic projection

x' [a b c K
7l e

1
-
'x, vy, 1 0 0 0]b| [x]
0 0 0 x y 1f|c ¥y,
x, v, 1 0 0 olld| |x x = [ATA]"1AThH
; e
S

What is the minimum number of matched points that we need?



Finding the objects (SIFT, Lowe 2004)

1. Match interest points from input image to database image
2. Get location/scale/orientation using Hough voting

— Intraining, each point has known position/scale/orientation
wrt whole object

— Matched points vote for the position, scale, and orientation
of the entire object

— Bins for x, y, scale, orientation
Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)
. Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification
— For each bin with at least 3 keypoints

— lterate between least squares fit and checking for inliers and
outliers

4. Report object if > T inliers (T is typically 3, can be computed to
match some probabilistic threshold)



Examples of recognized objects

KT i




Course Outline

Image Formation and Processing

G R G R

Feature Detection and Matching

Multiple Views and Motion

Geometric Transformations, Camera Calibration

Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

CBA Research Computer Vision 68



Resources

Books

R. Szeliski, Computer Vision: Algorithms and Applications, 2010 — available online
D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003

L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer
Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing
http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: OpenCV, VLFeat Matlab Toolbox, Piotr's Computer Vision Matlab Toolbox,
EasyCamcCalib Software, FLANN, Point Cloud Library PCL, LibSVM, Camera Calibration Toolbox for
Matlab

CBA Research Computer Vision




