Computer Vision Course Lecture 07

Local Image Descriptors

Ceyhun Burak Akgül, PhD

cba-research.com

Computer Vision 3D World 2D Image Tools: -Geometry - Machine Learning -Calculus - Signal Processing camera - graph Theory _Optimization

> Photo credit: Olivier Teboul vision.mas.ecp.fr/Personnel/teboul

Spring 2015 Last updated 07/04/2015

Course Outline

Image Formation and Processing

Light, Shape and Color
The Pin-hole Camera Model, The Digital Camera
Linear filtering, Template Matching, Image Pyramids

-f=100mm--z=102mm--z=5m

G	R	G	R
В	G	В	G
G	R	G	R
В	G	В	G

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors

Feature Matching and Hough Transform

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

Correspondence and Alignment

 Correspondence: matching points, patches, edges, or regions across images

Overview of Keypoint Matching

- 1. Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Harris Detector

Second moment

$$I_x I_y(\sigma_D)$$
 $I_y^2(\sigma_D)$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

2. Square of derivatives

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

So far: can localize in x-y, but not scale

How to find corresponding patch sizes?

Function responses for increasing scale (scale signature)

K. Grauman, B. Leibe

What Is A Useful Signature Function?

• Difference-of-Gaussian = "blob" detector

Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

DoG – Efficient Computation

Computation in Gaussian scale pyramid

Find local maxima in position-scale space of Difference-of-Gaussian

Results: Difference-of-Gaussian

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	$_{\mathrm{Blob}}$	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	√			√			+++	+++	+++	++
Hessian		\checkmark		\checkmark			++	++	++	+
SUSAN	\checkmark			√			++	++	++	+++
Harris-Laplace	√	(√)		√	√		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		√	\checkmark		++	++	++	+++
Harris-Affine	√	(√)		√	√	√	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	(√)	+	+	++	+
Edge-based	\checkmark			\checkmark	\checkmark	\checkmark	+++	+++	+	+
MSER				√	√	√	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	(√)	()	+	+	+	+

Orientation Normalization

Compute orientation histogram

[Lowe, SIFT, 1999]

- Select dominant orientation
- Normalize: rotate to fixed orientation

Image representations

- Templates
 - Intensity, gradients, etc.

- Histograms
 - Color, texture, SIFT descriptors, etc.

Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Image Representations: Histograms

Histogram: Probability or count of data in each bin

- Requires lots of data
- Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Image Representations: Histograms

Clustering

Use the same cluster centers for all images

Computing histogram distance

$$histint(h_i, h_j) = 1 - \sum_{m=1}^{K} \min(h_i(m), h_j(m))$$

Histogram intersection (assuming normalized histograms)

$$\chi^{2}(h_{i}, h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$$

Chi-squared Histogram matching distance

Cars found by color histogram matching using chi-squared

Histograms: Implementation issues

- Quantization
 - Grids: fast but applicable only with few dimensions
 - Clustering: slower but can quantize data in higher dimensions

Few Bins Need less data Coarser representation

Many Bins
Need more data
Finer representation

- Matching
 - Histogram intersection or Euclidean may be faster
 - Chi-squared often works better
 - Earth mover's distance is good for when nearby bins represent similar values

What kind of things do we compute histograms of?

Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

Histograms of oriented gradients

SIFT – Lowe IJCV 2004

SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)

SIFT vector formation

- 4x4 array of gradient orientation histograms weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Ensure smoothness

- Gaussian weight
- Trilinear interpolation
 - a given gradient contributes to 8 bins:4 in space times 2 in orientation

Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images

⇒ 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Shape Context Descriptor

Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

Choosing a descriptor

Again, need not stick to one

 For object instance recognition or stitching, SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

Course Outline

Image Formation and Processing

Light, Shape and Color
The Pin-hole Camera Model, The Digital Camera
Linear filtering, Template Matching, Image Pyramids

-f = 100 mm

G	R	G	R
В	G	В	G
G	R	G	R
В	G	В	G

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors

Feature Matching and Hough Transform

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

Resources

Books

- R. Szeliski, Computer Vision: Algorithms and Applications, 2010 available online
- D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003
- L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing

http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: OpenCV, VLFeat Matlab Toolbox, Piotr's Computer Vision Matlab Toolbox, EasyCamCalib Software, FLANN, Point Cloud Library PCL, <u>LibSVM</u>, <u>Camera Calibration Toolbox for Matlab</u>