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Correspondence and Alignment

* Correspondence: matching points, patches, edges, or
regions across images




Overview of Keypoint Matching

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

4. Compute a local
descriptor from the
normalized region

d(f ;- f5)<T

5. Match local
descriptors

K. Grauman, B. Leibe



Harris Detector
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So far: can localize in x-y, but not
scale




Automatic Scale Selection

f(lil...im (x,o’)) = f([il...im (x,aoj))

How to find corresponding patch sizes?

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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What Is A Useful Signature Function?

e Difference-of-Gaussian = “blob” detector

o

K. Grauman, B. Leibe



Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe



DoG - Efficient Computation

 Computation in Gaussian scale pyramid
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Find local maxima in position-scale space

A L L L L LSS
VAV A ). sy
S oS S
L L S

e A A A A A
Scale VO Ao
T
AT

ST
."7‘ 7@'
> ST
T

\

=> List of
(x,y,s)

K. Grauman, B. Leibe



Results: Difference-of-Gaussian

K. Grauman, B. Leibe



Choosing a detector

* What do you want it for?
— Precise localization in x-y: Harris
— Good localization in scale: Difference of Gaussian
— Flexible region shape: MSER

* Best choice often application dependent
— Harris-/Hessian-Laplace/DoG work well for many natural categories
— MSER works well for buildings and printed things

Why choose?

— Get more points with more detectors

* There have been extensive evaluations/comparisons
— [Mikolajczyk et al., 1JCV’'05, PAMI’05]
— All detectors/descriptors shown here work well



Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

Rotation Scale Affine Localization

Feature Detector | Corner Blob Region invariant invariant  invariant | Repeatability accuracy Robustness Efficiency
Harris v v +++ +++ e ++
Hessian i r Tt +
SUSAN Vv v ++ ++ e e
Harris-Laplace v (V) Vv Vv +++ +++ ++ +
Hessian-Laplace (/) Vv Vv Vv +++ + o+ +4++ -+
DoG (V) v v Vv ++ ++ ++ ++
SURF (v) Vv Vv Vv ++ 4 + R
Harris-Affine v (V) v Vv v + 4+ + ++ ++
Hessian-Affine (/) v Vv Vv Vv +++ +++ +4 ++
Salient Regions (/) Vv Vv (V) + + 4+ +
Edge-based v v v v L4 4t + +
MSER v v v Vv +++ +--+ ++ +++
Intensity-based Vv v Vv Vv ++ 4+ 4+ 4+
Superpixels v v (+/) (V) + + + +

Tuytelaars Mikolajczyk 2008



Orientation Normalization

 Compute orientation histogram [Lowe, SIFT, 1999]
e Select dominant orientation
e Normalize: rotate to fixed orientation

! e

o 1 21

T. Tuytelaars, B. Leil



Image representations

* Templates Yo 4

— Intensity, gradients, etc. ." "‘

* Histograms
— Color, texture, SIFT descriptors, etc.



Image Representations: Histograms
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Global histogram

* Represent distribution of features
— Color, texture, depth, ...

Images from Dave Kauchak



Image Representations: Histograms

Histogram: Probability or count of data in each bin
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* Joint histogram
— Requires lots of data

— Loss of resolution to
avoid empty bins

Images from Dave Kauchak
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Marginal histogram
Requires independent features

More data/bin than
joint histogram



Image Representations: Histograms

Clustering

feature 2
feature 2
>

feature 1 feature 1

Use the same cluster centers for all images

Images from Dave Kauchak



Computing histogram distance

histint(h,,h,) = 1- imin(hi (m),h,(m))

Histogram intersection (assuming normalized histograms)

2 _l K [hl(m)—h](m)]z
X (hi,hy) = 2; h,(m) + h,(m)

Chi-squared Histogram matching distance

A e 0
AT R e S T

Cars found by color histogram matching using chi-squared



Histograms: Implementation issues

* Quantization
— Grids: fast but applicable only with few dimensions
— Clustering: slower but can quantize data in higher dimensions

o e—

Few Bins Many Bins

Need less data Need more data
Coarser representation Finer representation
* Matching

— Histogram intersection or Euclidean may be faster

— Chi-squared often works better
— Earth mover’s distance is good for when nearby bins represent
similar values



What kind of things do we compute
histograms of?

lightness =g

L*a*b* color space HSV color space

e Texture (filter banks or HOG over regions)



What kind of things do we compute

histograms of?
* Histograms of oriented gradients
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SIFT vector formation

e Computed on rotated and scaled version of window
according to computed orientation & scale

— resample the window

* Based on gradients weighted by a Gaussian of
variance half the window (for smooth falloff)

Image gradients



SIFT vector formation

e 4x4 array of gradient orientation histograms
weighted by magnitude

* 8 orientations x 4x4 array = 128 dimensions

* Motivation: some sensitivity to spatial layout, but not
too much.
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Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4




Ensure smoothness

* Gaussian weight

e Trilinear interpolation

— a given gradient contributes to 8 bins:
4 in space times 2 in orientation

* ¥
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Image gradients Keypoint descriptor



Reduce effect of illumination

e 128-dim vector normalized to 1

* Threshold gradient magnitudes to avoid excessive
influence of high gradients

— after normalization, clamp gradients >0.2

— renormalize

* | ¥
%

Image gradients Keypoint descriptor



Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters &

integral images
=> 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz
(detector + descriptor, 640x480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV’06], [Cornelis, CVGPU'08]

K. Grauman, B. Leibe



Local Descriptors: Shape Context

Count the number of points
inside each bin, e.g.:

Count=14

Count =10

Log-polar binning: more
precision for nearby points,
more flexibility for farther
points.

Belongie & Malik, ICCV 2001



Shape Context Descriptor




Local Descriptors

* Most features can be thought of as templates,
histograms (counts), or combinations

* The ideal descriptor should be
— Robust
— Distinctive
— Compact
— Efficient
* Most available descriptors focus on edge/gradient
information
— Capture texture information
— Color rarely used

K. Grauman, B. Leibe



Matching Local Features

* Nearest neighbor (Euclidean distance)
* Threshold ratio of nearest to 2" nearest descriptor
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Choosing a descriptor

* Again, need not stick to one

* For object instance recognition or stitching, SIFT or
variant is a good choice



Things to remember

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG

* Descriptors: robust and selective /=77

— spatial histograms of orientation
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Image gradients Keypoint descriptor
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Resources

Books

R. Szeliski, Computer Vision: Algorithms and Applications, 2010 — available online
D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003

L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer
Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing
http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: OpenCV, VLFeat Matlab Toolbox, Piotr's Computer Vision Matlab Toolbox,
EasyCamcCalib Software, FLANN, Point Cloud Library PCL, LibSVM, Camera Calibration Toolbox for
Matlab

CBA Research Computer Vision




