Computer Vision Course Lecture 06

Hough Transform Interest Points

Ceyhun Burak Akgül, PhD cba-research.com

Photo credit: Olivier Teboul vision.mas.ecp.fr/Personnel/teboul

Spring 2015 Last updated 07/04/2015

These slides have been adapted from James Hays's 2014 Computer Vision course slides at Brown University.

Course Outline

Image Formation and Processing

Light, Shape and Color

The Pin-hole Camera Model, The Digital Camera Linear filtering, Template Matching, Image Pyramids

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors Feature Matching and **Hough Transform**

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview

Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

Hough transform

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Hough Transform: Outline

- 1. Create a grid of parameter values
- 2. Each point votes for a set of parameters, incrementing those values in grid
- 3. Find maximum or local maxima in grid

Hough transform - experiments

Hough transform - experiments

Need to adjust grid size or smooth

Hough transform - experiments

Issue: spurious peaks due to uniform noise

1. Image → Canny

2. Canny → Hough votes

3. Hough votes \rightarrow Edges

Find peaks and post-process

Hough transform example

http://ostatic.com/files/images/ss_hough.jpg

Finding lines using Hough transform

- Using m,b parameterization
- Using r, theta parameterization
 - Using oriented gradients
- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

Correspondence across views

 Correspondence: matching points, patches, edges, or regions across images

Applications

- Feature points are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Example: structure from motion

Overview of Keypoint Matching

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Goals for Keypoints

Detect points that are *repeatable* and *distinctive*

Key trade-offs

Detection of interest points

More Repeatable

Robust detection Precise localization

More Points

Robust to occlusion Works with less texture

Description of patches

More Distinctive Minimize wrong matches

More Flexible

Robust to expected variations Maximize correct matches

Invariant Local Features

•Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

This class: interest points

- Note: "interest points" = "keypoints", also sometimes called "features"
- Many applications
 - tracking: which points are good to track?
 - recognition: find patches likely to tell us something about object category
 - 3D reconstruction: find correspondences across different views

This class: interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Choosing interest points

Where would you tell your friend to meet you?

Choosing interest points

Where would you tell your friend to meet you?

• What points would you choose?

Many Existing Detectors Available

Hessian & Harris Laplacian, DoG Harris-/Hessian-Laplace Harris-/Hessian-Affine EBR and IBR MSER Salient Regions

Others...

[Beaudet '78], [Harris '88]
[Lindeberg '98], [Lowe 1999]
[Mikolajczyk & Schmid '01]
[Mikolajczyk & Schmid '04]
[Tuytelaars & Van Gool '04]
[Matas '02]
[Kadir & Brady '01]

Feature extraction: Corners

Slides from Rick Szeliski, Svetlana Lazebnik, and Kristin Grauman

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions

Source: A. Efros

"edge": no change along the edge direction

"corner": significant change in all directions

Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147--151.

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

Change in appearance of window w(x,y) for the shift [u,v]:

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

E(u, v)

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^{2}$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order *Taylor expansion*:

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

The quadratic approximation simplifies to

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I (\nabla I)^T$$

Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Interpreting the second moment matrix

The surface E(u, v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Diagonalization of M:
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function

 $R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

α: constant (0.04 to 0.06)

Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- Find points whose surrounding window gave large corner response (f> threshold)
- 3) Take the points of local maxima, i.e., perform nonmaximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector [Harris88]

har

5. Non-maxima suppression

Harris Detector: Steps

Harris Detector: Steps Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

•** •

· · ·

. .

Harris Detector: Steps

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same

Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

x (image coordinate)

Partially invariant to affine intensity change

Image translation

· Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

All points will be classified as edges

Corner location is not covariant to scaling!

Course Outline

Image Formation and Processing

Light, Shape and Color

The Pin-hole Camera Model, The Digital Camera Linear filtering, Template Matching, Image Pyramids

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors Feature Matching and Hough Transform

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview

Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

Resources

Books

R. Szeliski, Computer Vision: Algorithms and Applications, 2010 – available online

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003

L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing

http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: <u>OpenCV</u>, <u>VLFeat Matlab Toolbox</u>, <u>Piotr's Computer Vision Matlab Toolbox</u>, EasyCamCalib Software, FLANN, Point Cloud Library PCL, <u>LibSVM</u>, <u>Camera Calibration Toolbox for</u> <u>Matlab</u>