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Abstract—We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape

properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density

functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE)

coupled with fast Gauss transform. The nonparametric KDE technique allows reliable characterization of a diverse set of shapes and

yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization

also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive

retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and

heterogeneous set of shape categories.

Index Terms—Shape matching, retrieval, surface representations, nonparametric statistics, geometric transformations, invariance,

feature evaluation and selection, performance evaluation.
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1 INTRODUCTION

FAST and accurate scanning technology equipped with
shape modeling and rendering tools has enabled the

means of acquiring, designing, and manipulating complete
3D models of real-world objects. Digital 3D models as a
new modality of visual information find applications in
several domains such as computer-aided design [1],
cultural heritage archival [2], molecular modeling [3], and
video games industry [4], [5]. With growing interest in
3D models, their effective retrieval from large databases is
acquiring economic utility [4], [6], [7]. Text-based systems,
much like in all other media applications, would remain
severely limited in describing and retrieving 3D models
[7]. Content-based systems, on the other hand, offer an
effective and scalable complementary solution to the
3D retrieval problem.

We address content-based retrieval of complete
3D object models by a probabilistic generative description
of their local shape. We call the proposed method as the
density-based framework (DBF) in that it describes
3D objects with multivariate probability density functions

(pdfs) of chosen shape features. Our previous study [8] has
shown that such an approach has a promising retrieval
potential. In this paper, we analyze DBF in greater detail
and provide extensive retrieval experiments to demon-
strate that it can satisfactorily handle large collections of
heterogeneous shape categories. In particular, we show
that DBF is relatively insensitive to small shape perturba-
tions and mesh resolution, that it is computationally
efficient, and that it enjoys a permutation property which
guarantees invariance to a certain class of 3D transforma-
tions at the shape matching stage. As a consequence of
these contributions, DBF qualifies as one of the best
3D shape descriptors, as established by retrieval experi-
ments on several databases.

Our starting point is that, as similar shapes induce
similar feature distributions, two shapes can be compared
by the distance between their feature pdfs. Histogram-
based 3D shape descriptors [9], [10], [11], [12], [13], [14], [15]
(see Section 2) have relied on this intuitively appealing idea
but failed to provide fine grain discrimination required by
the 3D retrieval task [7]. Compared to its histogram-based
ancestors, DBF is original in two aspects: 1) It employs
richer sets of multivariate shape features and 2) it adopts the
kernel strategy to estimate the distribution [16]. As a further
contribution, we experimentally show that these two
aspects overcome the performance limitation of early
histogram-based 3D shape descriptors.

After transforming a given 3D model into a canonical
coordinate frame and scale, our scheme first characterizes
its surface locally using simple and direct features, without
resorting to computationally intensive methods such as
shape contexts [17] or spin images [18]. Our features are,
in fact, as simple as distance-to-origin, radial, and normal
directions, and principal curvatures (Sections 3.1 and 3.2).
Without sacrificing computational simplicity, we construct
more informative local characterizations by joining these
simple features into multivariate ones. In a previous work
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[19], we have demonstrated that, for 3D retrieval, pdf-
based descriptors induced by such multivariate feature
combinations are more effective than combinations of
scalar feature pdfs.

Once the surface information is collected, we proceed to
estimate the feature pdfs by kernel density estimation (KDE)
[16] (Section 3.4). The samples of the pdf at given target
feature points constitute our 3D shape descriptor. KDE is
advantageous in our context in more than one way. First, its
nonparametric nature provides us with enough flexibility to
model feature distributions for a broad and diverse set of 3D
objects. Second, in contrast to the histogram estimator, its
smoothing parameter can be adjusted to make the descriptors
relatively insensitive to small shape variations and to
imperfections in object pose and scale normalization (Sec-
tion 4.1). Third, descriptors can still be computed very
efficiently when KDE is coupled with the fast Gauss trans-
form (FGT) [20], [21] (Section 4.3). Note also that, in this
generative distribution-based approach, the descriptor
stands for the conditional density of local features for a given
shape. Consequently, the averaged pdf over a set of 3D shapes
belonging to the same category is semantically relevant and
can serve as a category-level prior for general object
recognition and classification. A further advantage of pdf-
based description is that we can guarantee invariance against
a class of object transformations at the shape matching stage.
There are, indeed, methods in the literature, such as [22], that
use invariant shape matching. However, to achieve invar-
iance, such methods have to recompute the descriptor from
scratch for every possible transformation. Obviously, they are
not computationally efficient, compromising their use for
practical applications. One of the major novelties of the
present paper with respect to our previous work [8] is to
rigorously show the permutation property of the density-
based framework (Section 4.2). This enables, via a simple
permutation, almost instantaneous descriptor computation
for transformed versions of 3D objects.

We demonstrate the retrieval effectiveness of DBF on
four different 3D model databases with varying surface
mesh quality, semantic content, and classification granular-
ity. The most notable of these is the Princeton Shape
Benchmark (PSB) [23], which has become a standard test
environment for 3D shape descriptors since its release in
2004. On PSB, our framework is on a par with the best
performing descriptors reported so far. Furthermore,
although its closest competitor DSR (a combination of the
depth buffer, silhouette, and radialized extent function
descriptors, see Section 2 and [24], [25]) is also highly
discriminative, we have also observed that DBF and DSR
methods are somewhat complementary so that it is
possible to achieve even higher retrieval performance with
their combination.

The paper is structured as follows: In the next section, we
present an overview of previously proposed shape descrip-
tors for 3D retrieval. In Section 3, we describe the steps of
DBF in detail. In Section 4, we analyze its properties such as
insensitivity to small shape variations and mesh resolution,
invariance, and computational efficiency. In Section 5, we
undertake an exhaustive campaign of retrieval experiments
and illustrate the effectiveness of our methods on several

3D model databases. In Section 6, we conclude and discuss
further research directions.

2 PREVIOUS WORK

Three-dimensional model retrieval hinges on shape match-
ing, that is, determining the extent to which two shapes
resemble each other [7]. There are two main approaches to
this problem: matching by feature correspondences and
matching by global descriptors. The strategy in the former
approach is to compute multiple local features for every
object and then to compute a distance measure between
pairs of objects for an optimal set of feature correspon-
dences and an optimal relative transformation [26]. The
global descriptor-based approach, on the other hand,
reduces intrinsic shape characteristics to vectors or graph-
like data structures, called shape descriptors, and then
evaluates the distance between the descriptor pairs as a
measure of similarity. The difficulty of finding correspon-
dences is a well-known computational problem in compu-
ter vision and shape analysis [17]. Global descriptors try to
solve the correspondence problem by “registering” the
shape information on a common grid. Table 1 provides a
taxonomy of 3D shape descriptors with emphasis on
“registration” methods as we describe in the present
section. References [4], [6], [7] provide more comprehensive
reviews in this rapidly evolving field.

A number of 3D shape descriptors can be classified
under the heading of histogram-based methods [9], [10], [11],
[12], [13], [14], [15]. We use the term “histogram” as an
accumulator that collects numerical values of certain
attributes of the 3D object. In this sense, not all the methods
in this category [13], [14], [15] are true histograms in the
rigorous statistical sense of the term, but they all share the
methodology of accumulating a geometric feature in bins
defined over the feature space. These methods bypass the
correspondence problem by discarding all the spatial
information. The price paid for this solution is their lack
of fine grain discrimination required for the retrieval task
[7] (3D Hough transform method [15] can be considered as
an exception to this, see Section 5.5).

Transform-based methods [24], [27], [28], [29], [30], [31], [32],
[33], [34] implicitly register the surface points onto a 3D voxel
or spherical grid by means of a scalar-valued function (e.g., a
binary function testing the presence of a surface point on a
grid point or the signed distance function of the surface),
which is then processed by transform tools such as 3D Fourier
[27], angular radial transform [28], 3D Radon [29], spherical
trace transform [30], spherical harmonics [24], [31], [32], [33],
or wavelets [34]. A significant advantage of using transform
machinery is descriptor compaction achieved by keeping first
few transform coefficients in the descriptor vector. Further-
more, pose invariance can be obtained by discarding the
“phase” of the transform coefficients at the expense of some
shape information, e.g., as in RISH [31] (see Table 1 for the
acronym).

Two-dimensional view-based methods [22], [24] consider
the 3D shape as a collection of 2D projections taken from
canonical viewpoints. Each projection is then described by
standard 2D image descriptors like Fourier descriptors [24]
or Zernike moments [22]. These methods work surprisingly
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well despite their intuitive disadvantage as they discard

valuable 3D information. A possible explanation for their

good performance is that, as the 3D models are completely

given, projections can be produced in a controlled manner

so that nuisance effects of occlusion (except self-occlusions

of course), clutter, or affine deformations are avoided. These

methods can also be beneficial for 2D sketch-based queries.
In [24], a hybrid descriptor, which is a combination of

two 2D view-based methods, DBI and SIL, and a transform-

based method REXT, is proposed (see Table 1 for the

acronyms). This descriptor, denoted as DSR, is proven to be

very effective on PSB [23] and on the Konstanz database [4].
Graph-based descriptors [35], [36], [37] are fundamen-

tally different from other vector-based descriptors. They are

more elaborate and complex, in general harder to obtain,

but they have the potential of encoding geometrical and

topological shape properties in a more faithful and intuitive

manner. However, they do not generalize easily to all

3D shape representation formats and they require dedicated

matching schemes. In fact, from an algorithmic point of

view, graph-based methods do not completely obviate the

correspondence issue. They just alleviate it by reducing the

problem of matching two feature sets to that of matching

graph nodes, which, however, still remains a formidable

task for general-purpose retrieval applications. We note

that, using tools from spectral graph theory, some part of

the information contained in a graph can be encoded in the

form of vector-based numerical descriptions.
We now proceed with the exposition of our density-

based framework, which can be viewed as a formal

generalization of histogram-based 3D shape descriptors.

3 DENSITY-BASED FRAMEWORK

Density-based shape description is a generative model,
aiming to represent geometrical shape properties contained
within a class of 3D objects as a probability distribution.
This generative model relies on the idea that, associated
with each shape concept, there is an underlying random
process, which induces a probability law on some local
surface feature of choice. We assume that this probability
law admits a pdf, which encodes intrinsic shape properties
to the extent achieved by the chosen feature. The similarity
between two shapes can thus be quantified by measuring
the variation between their associated feature pdfs.

We define the shape descriptor of a given 3D object as

the sampled pdf of some local geometric features computed

over its surface. Each of these features is treated as a

random variable with a realization (or observation) at every

point of the surface. To set the notation, let S be a random

feature vector defined on the surface of a 3D object O and

taking values within a subspace RS of IRm, where m is the

number of components in the vector S. Let fSjO ¼
4
fSð�jOÞ be

the pdf of S for the object O. This pdf can be estimated

using the set of feature observations, called the source set,

sk 2 RSf gKk¼1 computed on the object’s surface given in

terms of a triangular mesh. Suppose furthermore that we

have specified a finite set of N pdf evaluation points within

RS , denoted as RS ¼ tn 2 RSf gNn¼1, called the target set. The

density-based descriptor fSjO for the object O (w.r.t. the

feature S) is then simply an N-dimensional vector whose

entries consist of the pdf samples at the target set, that is,

fSjO ¼ ½fSðt1jOÞ; . . . ; fSðtN jOÞ�. Density-based shape de-

scription consists of three main stages (see Fig. 1):
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1. In the design stage, we choose good local features that
will accumulate to global shape descriptors. Good
features are easy to compute and locally discrimi-
native (Sections 3.1 and 3.2).

2. In the target selection stage, we determine the target
set RS over which the feature pdf is evaluated
(Section 3.3).

3. In the computational stage, we estimate fSðtjOÞ at the
designated targets t 2 RS , using the KDE technique
coupled with the fast Gauss transform (FGT)
(Sections 3.4 and 4.3).

Once the descriptors of two different objects are computed

by the above scheme, any vector distance can be used to

compare them. To this end, we employ the L1-distance or an

invariant version of it (see Section 4.2) throughout the paper.

3.1 Local Surface Features

In this section, we describe the local geometric features that

we employ to characterize 3D surfaces (see Fig. 2). We

proceed from simple features that coarsely characterize the

surface toward features that exploit differential geometry

information.

3.1.1 Zero-Order Features

The most basic information about a point lying on a

3D surface can be derived from its coordinates, which we

refer to as zero-order features. The radial distanceR 2 ð0; rmax�
measures the distance of a surface pointQ to the origin (center

of the mesh) and is commonly used in shape description

schemes such as [9], [11]. It may not be an effective shape

feature all by itself, but it becomes useful, especially when

other features need to be characterized separately at different

quanta of the radial distance. The radial direction R̂ 2 S2 is the

directional vector, collinear with the ray traced from the

origin to the surface point Q. The R̂-vector lies on the unit

2-sphere S2 and is scale-invariant.

3.1.2 First-Order Features

First-order features require first-order differentiability,

hence the existence of a tangent plane at each surface point,

as illustrated in Fig. 2. For 3D meshes, one can compute a

tangent plane at each vertex based on the triangle planes
within the one-ring neighborhood [38]. In this category, the
following features are considered:

First, the normal direction N̂ 2 S2 is simply the unit
normal vector at a surface point and represented as a
3-tuple ðN̂x; N̂y; N̂zÞ. Second, the radial-normal alignment A is
the absolute cosine of the angle between the radial and
normal directions, and computed as A ¼ jhR̂; N̂ij 2 ½0; 1�.
This feature is a measure of the local surface deviation from
sphericity. For example, if the surface locally approximates
a spherical cap, then the radial and normal directions align
and the A-feature approaches unity. Finally, the tangent
plane distance D ¼ RA stands for the distance between the
tangent plane at a surface point Q and the origin.

3.1.3 Second-Order Features

Second-order features around a point Q can be derived
from the differential dNQ of the normal field at that point
[39]. By definition, dNQ requires second-order differentia-
bility. For triangular meshes, dNQ can be computed by
fitting a twice-differentiable surface patch around the vertex
point and invoking standard formulas from differential
geometry [39] or by discrete approximation using the mesh
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Fig. 1. Density-based shape description: Measurements of the (multivariate) feature S obtained from the 3D object surface are processed into

descriptor vectors, that is, the probability density function of the feature.

Fig. 2. Illustration of local surface features.



triangles within the one-ring of the vertex point [38]. We use
the shape index SI as our second-order feature to provide a
local categorization of the shape into primitive forms
such as spherical cap and cup, dome, rut, ridge, trough,
or saddle. We consider the parameterization proposed in
[40] given by SI ¼ 1=2� ð1=�Þarctan ð�1 þ �2Þ=ð�1 � �2Þ½ �,
where �1 and �2, the principal curvatures at the surface
point Q, given, respectively, by the smallest and the largest
eigenvalues of dNQ. The feature SI is confined within
the range ½0; 1� and not defined when �1 ¼ �2 ¼ 0 (planar
patch). It not only inherits the translation and rotation
invariance of the principal curvatures, but also is a unitless
quantity, hence scale-invariant.

3.1.4 Multivariate Characterization

Each of the above features reflects a certain aspect of the
local shape. One can obtain a more thorough characteriza-
tion of a surface point by constructing the feature vector
ðR; R̂; N̂; SIÞ. The multivariate pdf of this feature vector
becomes a global descriptor, incorporating all local shape
information up to second-order. Note that ðR; R̂; N̂; SIÞ is
an 8-component feature with an intrinsic dimensionality of
6 within ð0; rmax� � S2 � S2 � ½0; 1�. This fairly high dimen-
sionality brings in concomitant problems of pdf estimation
accuracy, high computation time, and huge storage size.
For practical reasons, we design and work with the
following multivariate pdf-based descriptors with manage-
able dimension:

. R-descriptor is the pdf of the coordinate representa-
tion ðR; R̂Þ of the surface point.

. T-descriptor is the pdf of the ðD; N̂Þ-feature and
aggregates the local tangent plane information.

. S-descriptor is the pdf of the ðR;A; SIÞ-feature, which
radializes the auxiliary alignment information A
together with the second-order feature SI.

3.2 Feature Calculation

To obtain feature observations from a triangulated surface,
we proceed on a per-triangle basis, taking also into account
the shape of the triangle by a rigorous averaging scheme. To
this effect, we compute the expected value of the local
feature S over each triangle of the mesh. The expectation
integral, when approximated in the discrete domain by
applying Simpson’s one-third numerical integration for-
mula, boils down to taking a weighted average of the
feature values calculated at nine adequately chosen points
on the triangle (see [8] for details). For nonuniform meshes
with low resolution, this averaging has the effect of
smoothing the observations so that the subsequent pdf
estimation can be performed more accurately. In contrast to
histogram-based techniques, which sample features at
isolated surface points, e.g., at barycenters of the triangles,
this averaging scheme results in more reliable descriptors
[8]. We should note that the Simpson averaging scheme
does not apply to the shape index SI. The computation of
the latter feature involves curvature estimation, which we
carry out on a per-vertex basis using Taubin’s algorithm
[38]. To obtain per-triangle observations of SI, we take the
average of the values at the three vertex points forming the
triangle. In a similar way to Simpson averaging, this adds
an implicit smoothing effect to the shape index calculation.

3.3 Target Selection

We define the target selection problem as sampling the
range of the feature at which the pdf is evaluated. Since a
density-based descriptor is a sampled version of a
continuous pdf, we need to be efficient in choosing density
evaluation points by exploiting any special structure of the
feature range.

Once the real interval I of a scalar feature is determined,
it is relatively simple to fix the targets. This can be done by
partitioning the interval into NI equally spaced (uniform)
subintervals and by taking the midpoints. We determine the
support I by clipping the tails of the scalar feature
distribution from the lower and upper percentiles based
on the empirical distribution obtained over a set of
representative objects. Note that clipping the distribution
makes sense only if the scalar feature has a magnitude
interpretation such as the radial distance R or the tangent
plane distance D for which too small and/or too large
values can be considered as outliers. In fact, for the
alignment A and the shape index SI, which both lie on
the unit interval ½0; 1�, the values near the boundaries are
quite informative about the local shape. For these, we
simply take equally spaced points within the unit interval.

For directional vector features R̂ and N̂, the correspond-
ing target points should lie on the unit 2-sphere S2.
Uniformly sampling the spherical coordinate intervals � ¼
½0; 2�Þ and � ¼ ½0; �Þ would lead to overaccumulation of
targets near the poles and to sparseness near the equator. To
avoid this bias, we consider an octahedron circumscribed
by the unit sphere, subdivide it into four each of its eight
triangles, radially project the new triangles on the unit
sphere, and iterate a factor of a-times the subdivision
process recursively. The barycenters of the resulting
triangles (after projecting back to the unit sphere) become
the target set for directional features. This leads to an
approximately uniform partitioning of the sphere. The
recursion factor a determines the number of resulting points
by NS2 ¼ 22aþ3.

As pointed out earlier, we can obtain informative
multivariate local characterizations up to second order by
joining scalar and directional features. In such cases, the
target selection range occurs as the Cartesian product of the
individual ranges of the features involved.

3.4 Kernel Density Estimation

The keystone of our shape description framework is a
flexible and computationally efficient scheme for density
estimation. We prefer the nonparametric KDE methodology
with a Gaussian kernel in which case the density estimate is
given by

fSðtnjOÞ ¼ C
XK
k¼1

wke
�1

2ðt�skÞ
TH�2ðt�skÞ; ð1Þ

where tn ¼ 1; . . . ; N and C ¼ ðð2�Þ
m
2 jHjÞ�1. We put this

generic estimation procedure into the context of 3D shape
description as follows.

Observations or sources sk 2 IRmf gKk¼1 are the feature values
(or vectors) computed on the surface of an object O. They can
be obtained from each of the mesh triangles, vertex points,
or by the averaging scheme described in Section 3.2.
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Targets tn 2 IRmf gNn¼1 are the pdf evaluation points so
that fSðtnjOÞ values constitute the descriptor vector fSjO ¼
½fSðt1jOÞ; . . . ; fSðtN jOÞ�.

Weights wk 2 IRf gKk¼1 stand for the importance of the
sources. Naturally, a large triangle induces a more im-
portant observation. Accordingly, we set the weight wk as
the relative area of the kth mesh triangle (w.r.t. the total
surface area).

Bandwidth parameter matrix H 2 IRm�m models the degree
of uncertainty about the observations and controls the
smoothing behavior of the KDE. Appropriate bandwidth
selection is a critical issue for all applications using the KDE
scheme. We deal with the effect of the bandwidth and the
associated selection problem in Section 4.1.

Note that the nonparametric pdf KDE scheme makes
fewer assumptions about the underlying generative model
and, hence, provides further flexibility as compared to
parametric approaches such as Gaussian mixture models.
From the practical side, by choosing KDE, we can avoid
computationally intensive parametric model estimation
procedures like Expectation-Maximization or Markov
Chain Monte Carlo methods, which would not be feasible
in a practical retrieval application. Our choice of the
Gaussian kernel in KDE is mainly motivated by such
computational concerns. As discussed in Section 4.3 in
detail, the complexity of KDE might be prohibitive unless
one uses fast computational approximation schemes such
as the FGT algorithm. FGT enables one to two order
decrease in the computational load of evaluating large
sums of Gaussians as in (1). Previous studies have indicated
that the shape of the kernel does not critically affect the
statistical accuracy [16]; in fact, it is stated in [41] that “the
choice of the kernel function is almost irrelevant for
the efficiency of the estimate.” Therefore, in view of the
computational advantage of the FGT algorithm, we find
that the Gaussian kernel is a sound and well-motivated
choice in our context.

4 PROPERTIES OF DBF

In this section, we investigate the sensitivity of DBF to
various perturbations, its pose invariance properties, and its
computational complexity.

4.1 Bandwidth Selection and Sensitivity Analysis

KDE imbues the pdf estimation with smoothing property,
so that it overcomes some of the inherent handicaps of
histogram estimators [16]. Histograms are affected by the
repositioning of the grid, hence of the setting of the origin,
and they tend to have jaggy appearance especially in high
dimensions. In KDE, on the other hand, the density estimate
does not depend on the choice of origin and can be obtained

in a continuum of target points. More importantly, KDE
makes better use of the available observations fskgKk¼1 as
they all contribute, in principle, to the density estimate at all
target points ftngNn¼1 by a soft assignment strategy as can be
seen from (1). This smoothing action of KDE is controlled by
the bandwidth parameter.

To set the ith diagonal entry of the m�m bandwidth
matrix H, we use a commonly used rule-of-thumb selector,
the Scott estimate [16] given by hi ¼ ð 4

Kðmþ2ÞÞ
1=ðmþ4Þ�i, where

�i is the standard deviation of the ith feature component,
estimated from a given 3D mesh. The Scott bandwidth has
been shown to be the optimal choice when features follow a
Gaussian density [16]. Although this assumption is rarely
fulfilled in practice, we adopt this rule-of-thumb as it
provides us with an explicit and straightforward formula.
Note that the Scott bandwidth matrices can be estimated for
each mesh separately. However, we have found out that
averaging the Scott bandwidth matrices over a representa-
tive set of models gives better empirical performance, as
shown in Table 2 (see Section 5.1 for the definition of the
DCG retrieval performance measure). Accordingly, we
recommend the use of an averaged bandwidth matrix for
all meshes in a training database (such as the PSB Training
Set, see Section 5.1). This database dependence is further
investigated in Section 5.4. Note also that we work
with diagonal bandwidth matrices of the form H ¼
diagðh1; . . . ; hmÞ since off-diagonal entries become negligi-
ble after averaging.

To analyze the sensitivity of the empirical performance as
a function of the bandwidth parameters, we perturbed the
average Scott bandwidths hi by scaling them as chi, with a
common scalar factor c 2 ½0:2; 2:0�. In Fig. 3, we provide the
DCG profiles as a function of c with steps of 0.2 for the R, T,
and S descriptors. The best performances are attained for
c 2 f1:0; 1:2g, showing that average Scott bandwidth gives a
sensible operational point. As expected, DCG degrades for
undersmoothed (c � 0:8) and oversmoothed (c > 1:2) cases.
Performance degradation for undersmoothed estimates is
much steeper than the oversmoothed ones. Undersmoothed
estimates reflect specific details about features; hence,
descriptors become too much object-specific. In a follow-
up experiment, we perturbed the component-wise Scott
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Fig. 3. Sensitivity of DCG to bandwidth parameters.



bandwidths hi independently by choosing 100 uniformly
distributed values within the interval ½0:8hi; 1:2hi� for each.
The average DCG statistics over these 100 descriptor sets for
the R, T, and S descriptors were very close to the Scott
bandwidth performances, 57 percent, 60 percent, and
52 percent respectively, with negligible variations. This is a
further evidence of the breadth of optimality, which extends
over 40 percent (�20 percent) of the Scott bandwidth in
terms of empirical DCG performance.

Increasing the bandwidth leads to smoother density
estimates. In the context of 3D shape description, this helps
to gloss over uncertainties that may arise from changes in
the mesh resolution and/or mesh degeneracies, measure-
ment noise and small shape variations, and pose normal-
ization errors. To illustrate this, we carried out a sensitivity
analysis of our descriptors against three types of nuisances:
changing mesh resolution, additive Gaussian noise, and
small rotation errors. We considered three bandwidth
choices, set as the Scott bandwith, one-fifth the Scott
bandwidth (undersmoothed), and twice the Scott band-
width (oversmoothed).

4.1.1 Sensitivity against Low Mesh Resolution

Since mesh resolution is not an intrinsic shape property,
descriptors should be insensitive to changes in the level of
detail. To investigate the sensitivity of the density-based
descriptors to resolution, we computed them on succes-
sively subdivided versions of a 3D cone model (see Fig. 4).
The left column of Fig. 5 shows the changes in the
descriptor according to the L1-distance (with respect to
the original cone mesh) as a function of decreasing
resolution for all descriptors. These sensitivity profiles put
forth a general pattern, which corroborates the fact that the
variation can be reduced by increasing the bandwidth
(which leads to oversmoothed density estimates). In fact,
the profiles for the R, D, A, and N̂ features exhibit very low
or negligible variation even for low resolution versions of
the cone model. On the other hand, controlling the variation
of the notoriously sensitive SI descriptor is somewhat
problematic and the 2� Scott bandwidth option is not
sufficient. Note, however, that the smoothing principle does
not change and an even larger bandwidth can be employed
to make the SI descriptor less sensitive.

4.1.2 Sensitivity against Noise

The middle column of Fig. 5 depicts the sensitivity of our
descriptors when Gaussian noise at various levels is added

to vertex points of a sphere mesh (see Fig. 4). Here again, a

large bandwidth (2� Scott) reduces the effects of noise on

descriptor variation. The difficulty of coping with the

SI descriptor is recurrent. Even for very low levels of

noise, its variation is dramatically high.1 In the presence of

noise, we can no longer rely on the SI descriptor.

4.1.3 Sensitivity against Pose Normalization Errors

Small pose uncertainties can arise due to the imperfections

of standard pose normalization methods that work best for

relatively compact and elliptical objects [24]. For example,

slight changes in postures of articulated objects, even

though they may not be semantically relevant, can give

rise to pose perturbations. The smoothing behavior of KDE

can be exploited to combat such deficiencies. To make this

point, we have generated randomly rotated versions of a

cylinder at increasing levels of angular deviation and

evaluated the descriptor variations. Variation profiles for

the R̂ and N̂ descriptors are displayed in the rightmost

column of Fig. 5. The remaining features are not considered

as they all are rotation-invariant by definition. We see that,

even for deviations as large as 30�, it is possible to keep the

descriptor variation negligible (when h ¼ 2� Scott).
With a judicious choice of the KDE bandwidth para-

meter, one can mitigate the effects of low mesh resolution,

slight pose perturbations, and measurement noise. Note,

however, that these robustness advantages should be

assessed to the degree they compromise the discrimination

ability of the descriptor. The empirical performance curves

in Fig. 3 tells us that while a slight oversmoothing of the

descriptors can even provide some performance gain,

undersmoothing is completely detrimental to the descrip-

tor’s classification power.

4.2 Invariance Properties

Geometric transformations of 3D objects, such as transla-

tion, rotation, reflection, and isotropic rescaling (collectively

denominated as similarity transformations), are often

viewed as nuisance effects that must be eliminated as they

do not contribute to the semantic classification of the shape.

In DBF, invariance is achieved in two stages: 1) by

preprocessing the object before descriptor extraction and

then 2) by postprocessing the descriptor before shape

matching. Note that there exist methods in the 3D shape

description literature where certain invariances are guar-

anteed by the design of features, for example, taking only

the magnitudes of spherical harmonics coefficients against

rotational effects [31]. However, such invariances come

with some loss of shape information. We think this can be

avoided by normalizing objects before descriptor extraction

and postprocessing descriptors at matching stage. Auto-

matic derivation of a canonical 3D reference frame against

rotations and reflections still remains as an open problem,

notwithstanding all the efforts in the literature [24].
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Fig. 4. (a) A cone model at different mesh resolutions and (b) a sphere

model at various levels of noise contamination.

1. Variations cannot go beyond 2 since we work with normalized
descriptors, in which case the L1-distance between two descriptors is
upper-bounded by 2.



4.2.1 Preprocessing for Invariance

Principal component analysis (PCA) and its variants [24]

constitute practically a universal tool for 3D pose normal-

ization although they are not always very stable to

variations of the object’s shape even in a semantically

well-defined class and might result in counterintuitive

alignments. From an operational point of view, we opt to

carry out the following normalization steps:
Translation. The object’s center of mass is considered as

the origin of the 3D coordinate system. We calculate the

center of mass as the area-weighted average of triangle

barycenters.
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Fig. 5. L1-distance of descriptors with respect to the baseline versus (a) decreasing mesh resolution, (b) increasing additive Gaussian noise, and

(c) increasing amounts of random rotation errors. The estimated Scott bandwidth(s) is written in brackets in the legend. The other two graphs are

obtained at 20 percent and 200 percent of the estimated Scott bandwidth(s).



Rotation and Reflection. We use Vranic’s “continuous”
PCA approach, where the covariance matrix of the surface
points is evaluated by integrating over triangles instead of
mere area-weighted averaging [24]. The axes of the
coordinate system are found by the eigendecomposition of
the estimated covariance matrix and the x; y; z labeling of
the axes is assigned according to the decreasing rank of the
eigenvalues (invariance to axis relabelings), while the
polarities are estimated by Vranic’s moments-based ap-
proach (invariance to mirror reflections) [24]. However, this
axis labeling and polarity assignment strategy does not
always yield consistent results. We specifically address this
shortcoming in the following postprocessing section.

Isotropic Rescaling. We calculate a scale factor as the area-
weighted average of the surface point-to-origin distances
and rescale the objects by dividing the surface point
coordinates by this factor.

4.2.2 Postprocessing for Invariance

Given the equivocation of the axis labeling and polarity
assignments, the invariance of DBF scheme can be
corroborated by exhaustively testing within an appropriate
set of 3D transformations what the object might undergo. In
DBF, the matching stage becomes only slightly computa-
tionally more intensive since we do not have to recalculate
the descriptor for each transformation but just to permute
its entries, as we describe in the sequel.

Consider a generic pose-dependent random surface
feature S 2 RS with pdf fS and a bijection � on RS . The
pdf of S is related to the pdf of its transformed version �ðSÞ
by fSðsÞ ¼ f�ðSÞð�ðsÞÞjJ�ðsÞj, where J� is the Jacobian of �.
When we restrict � to orthogonal transformations account-
ing for rotations, relabelings, and mirror reflections of the
coordinate axes, neither the intrinsic shape properties of the
object O nor the shape information in the feature S is
changed. For orthogonal transformations, we have jJ�ðsÞj ¼
j�j ¼ 1, thus fSðsjOÞ ¼ f�ðSÞð�ðsÞjOÞ; 8s 2 RS . Matching of

a test object O0 to a reference object O invariantly to any
orthogonal transformation � can then be carried out by
searching the minimum distance

Inv-L1ðO;O0Þ ¼ min
�2Oð3Þ

Z

s2RS

��f�ðSÞð�ðsÞjOÞ � fSðsjO0Þ
��ds;

ð2Þ

where Oð3Þ is the set of orthogonal transformations in IR3

and where L1-distance is used as the base distance. Given
two DBF descriptors fSjO and fSjO0 , the invariant measure in
(2) gets the form:

Inv-L1ðO;O0Þ ¼ min
�2Oð3Þ

f�ðSÞjO � fSjO0
�� ��

L1 ; ð3Þ

provided that the target set RS provides a uniform
partitioning of the feature space RS . The search for the
minimum in (3) is practical only when the pdf values
f�ðSÞð�ðtnÞjOÞ, i.e., at the new targets f�ðtnÞg, can be obtained
directly from the stored pdf values fSðtnjOÞ. This is feasible
whenever RS is closed under the action of �, i.e., when
8t 2 RS;�ðtÞ ¼ t0 2 RS . In such a case, � maps the target t to
another target t0 so that we have fSðtjOÞ ¼ f�ðSÞðt0jOÞ.

Accordingly, for a given descriptor fSjO and any orthogonal

�, the descriptor f�ðSÞjO is obtained simply by permuting the

components fSðtnjOÞ of the vector fSjO. The minimum in (3)

can then be found by exhaustively testing all the admissible

transformations � that leave the target set closed.
In this work, we restrict the set of admissible transforma-

tions to axis relabelings and mirror reflections, forming a

subset of Oð3Þ that we denote by PSð3Þ. This restriction is

mainly computational since the cardinality of PSð3Þ is only

48. Notice that the three coordinate axes can be labeled in

3! ¼ 6 possible ways and, for any given labeling, there are

23 ¼ 8 possible polarity assignments, which result in 6�
8 ¼ 48 possible xyz-configurations. The target set RS for

pose-dependent features R̂ or N̂ obtained by octahedron

subdivision (cf. Section 3.3) remains closed under � 2 PSð3Þ.
If the regular octahedron has its center placed at the origin

and its six vertices at ð�1; 0; 0Þ; ð0;�1; 0Þ;f ð0; 0;�1Þg, first,

its appearance will not depend on the axis labeling: After an

axis permutation, we will recover the same vertex coordi-

nates. Second, the octahedron is symmetric with respect to

each of the xy, xz, and yz-planes: After a reflection, we again

recover the same coordinates. This nice property of the

octahedron holds for all of its successive subdivisions of

any order, making the resulting target set RS closed under

� 2 PSð3Þ. Furthermore, each such � corresponds to a

unique permutation of descriptor vector entries so that the

invariant metric over � 2 PSð3Þ can be very efficiently

implemented via a look-up table. In fact, assuming that the

cost of a permutation is negligible, the complexity of the

invariant metric is just 48 times the complexity of a vector-

to-vector comparison by L1-distance. The matching run-

times of this invariant scheme are provided in Table 7 at the

end of Section 5.5.
Once mislabelings and/or erroneous polarity assign-

ments are compensated for, any small rotation errors after

normalization can be taken care of by the smoothing effect

of the KDE-based scheme as discussed in Section 4.1. The

significant performance improvements of this invariant

matching scheme are presented in Section 5.2.

4.3 Computational Complexity

The computational complexity of KDE using (1) directly is

OðKNÞ, where K is the number of observations (the number

of triangles in our case) and N is the number of density

evaluation points, i.e., targets. For applications like content-

based retrieval, thisOðKNÞ-complexity is prohibitive. Hope-

fully, the FGT algorithm is able to reduce the computational

complexity significantly. For example, on a Pentium 4 PC

(2.4 GHz CPU, 2 GB RAM) and for a mesh of 130,000 triangles,

the direct evaluation of a 1,024-point pdf-descriptor takes

125 seconds, while FGT takes only 2.5 seconds. FGT is an

approximation scheme enabling the calculation of large sums

of Gaussians within reasonable accuracy and reducing the

complexity down to OðK þNÞ [20], [21]. In our 3D shape

description system, we have used an improved version of

FGT implemented by Yang et al. [21].
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5 EXPERIMENTAL RESULTS

5.1 Databases and Evaluation Tools

To demonstrate the retrieval potential of DBF in a wide
range of applications, we have experimented with four 3D
databases selected from different domains.

Princeton Shape Benchmark (PSB) [23] contains 1,814 gen-
eral-purpose low-quality 3D models. The base ground-
truth classification consists of a training set (907 models
in 90 classes) and a test set (907 models in 92 classes).
Classification is induced by functionality as well as by
form. In general, PSB meshes have low resolution; they
are nonregular, nonsmooth, and contain degeneracies
such as nonmanifold, nonconnected triangles of varying
size and shape. These models are usually referred as
“triangular soups.”

Sculpteur (SCU) [2] contains 513 high-quality 3D models
in 53 classes consisting mainly of archaeological models.
SCU meshes are regular, smooth, and highly detailed in
terms of resolution.

SHREC Watertight (SHREC-W) [42] contains 400 high-
quality 3D models in 20 classes. This database is special in
that the classification takes into account not only the
geometrical similarities between shapes but also their
topological equivalences. Hence, it constitutes a challenging
test environment for geometry-induced description meth-
ods. SHREC-W meshes are regular and smooth.

Purdue Engineering Shape Benchmark (ESB) [1] contains 865
3D models of engineering parts in 45 classes. ESB meshes
are regular but in general nonsmooth due to the general
crisp geometrical nature of engineering parts, composed of
large flat patches along with many joints and sharp ridges.

PSB and SHREC-W represent two extremes in terms of
mesh regularity and smoothness. In SCU and SHREC-W
meshes, second-order differential structure is locally pre-
sent at every mesh point in contrast to PSB and ESB where
second-order geometry is either not very informative or
difficult to be analyzed.

In our comparative analyses, we have used the following
statistics to measure the retrieval performance:

Precision-Recall curve. For a query q which is a member of
a certain class C of size jCj, Precision (vertical axis) is the ratio
of the relevant matches Kq (matches that are within the
same class as the query) to the number of retrieved models
Kret, and Recall (horizontal axis) is the ratio of relevant
matches Kq to the size of the query class jCj. Ideally, this
curve should be a horizontal line at unit precision.

Nearest Neighbor (NN). The percentage of the first-closest
matches that belong to the query class. A high NN score

indicates the potential of the algorithm in a classification
application.

Discounted Cumulative Gain (DCG). DCG is a statistic

weighting correct results at the top of the list more than

those appearing later. To calculate this measure, the ranked

list of retrieved objects is converted to a list L, where an

element Lk has value 1 if the kth object is in the same class

as the query, and otherwise, has value 0. Discounted

cumulative gain at the kth rank is then defined as DCGk ¼
DCGk�1 þ Lk

log2ðkÞ ; k 	 2; DCG1 ¼ L1. The final DCG score for a

query q 2 C is the ratio of DCGKmax
to the maximum possible

DCG that would be achieved if the first jCj retrieved elements

were in the class C, where Kmax is the total number of

objects in the database.
Normalized DCG (NDCG). This statistic is based on

averaging DCG values of a set of algorithms on a given
database. A positive NDCG indicates an above-the-average
performance. Let DCGðAÞ be the DCG of a certain algorithmA
and DCGðavgÞ be the averaged DCG over a set of algorithms
tested on the same database, then NDCG for the algorithmA
is defined as NDCGðAÞ ¼ DCGðAÞ= DCGðavgÞ � 1.

All of these quantities are normalized within the range
½0; 1� (except NDCG) and higher values reflect better
performance. The retrieval statistics presented in this work
are obtained using the utility software included in PSB [23].

5.2 Invariant Matching Results

In this section, we prove experimentally that the invariant
matching scheme described in Section 4.2 improves the
retrieval effectiveness for all databases. Table 3 shows that
additive DCG gains corresponding to R and T-descriptors
are significant, e.g., a 5.1 percent DCG point improvement is
obtained using the T-descriptor on PSB Training set. The
performance increase for ESB is more modest (1.3 percent
for R-descriptor and 1.7 percent for T-descriptor) compared
to other databases.

The sample “ant” query depicted in Fig. 6 illustrates how
invariance against coordinate axis relabelings and mirror
reflections can provide better matches. Top row displays
correct models with their ranks and L1-distances to the
query. Consider, for instance, the second correct item
retrieved at as far as the 20th position. Clearly, the problem
here is that PCA was not able to align the query and
database models coherently: The “head” parts of the ants
look opposite sides after normalization. Invariant matching
aligns the models correctly, consequently lifting the posi-
tion of the database model to second rank under Inv-L1 as
compared to its 20th rank order under L1 (see the bottom
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TABLE 3
DCG (Percent) Performance of L1 versus Inv-L1

on Different Databases for the R and T-Descriptors

Fig. 6. A sample “ant” query from SHREC-W database retrieved

(a) using L1-distance and (b) using Inv-L1-distance.



row of Fig. 6). Similar observations hold for the remaining
matches and Inv-L1 provides much better results (the first
four matches are correct). Note also that the “ant” class is a
difficult shape category for geometry-induced descriptors
(like ours) due the intrinsic geometric variability of its
members sharing the same topology. In this example, the
invariant scheme alleviates the problem noticeably.

Table 4 provides class-wise performance gain-loss
results. We see that roughly two thirds of shape classes
profit from the exhaustive search for coordinate axis
relabelings and mirror reflections. However, one third of
classes incur into performance loss, though the overall
balance remains positive for all classes and databases. A
plausible explanation for the performance loss of the metric
is the semantic gap between the geometry information
encoded by the descriptor and the purported functionality
of the 3D model. In other words, geometric invariance
cannot always resolve the semantics of the shape.

5.3 Discriminativeness of Features on Different
Databases

In this section, we address the following two questions:
1) Given a database, which local feature is the most
effective? 2) Given a feature, which database is the most
challenging for the retrieval task?

To illustrate the effectiveness of various feature sets, we
introduce a graphical tool, called DCG-eye diagrams. As
shown in Figs. 7 and 8, a DCG eye diagram is the graphical
representation of the DCG score represented as an inscribed
painted disk within a unit circle. The radius of the disk
is the DCG score while the unit circle represents the
maximum achievable DCG (100 percent). Obviously,
the bigger the “blue eye” or the smaller the residual area,
the higher the performance. These eye diagrams help us
visualize the effectiveness of features and their database
dependence. The R and T-features are evaluated via Inv-L1-
distance while the S-feature, which is pose-invariant by
definition, is evaluated under the L1-distance. From Fig. 7,
we see that, for all databases, the T-feature performs better
than the R and S-features, indicating that first-order surface
information is more discriminative than zero or second-
order. The S-feature is inferior on all three databases, except
for SHREC-W, where it is on a par with the T-feature. The
performance of the S-feature depends upon whether
the database shapes allow for the reliable computation of
the second-order features. In fact, for rough meshes as in
PSB or manufactured surfaces as in ESB, the shape index SI
feature is either not defined everywhere or unreliable.
Therefore, wherever curvature estimation (required for SI)
is not reliable, the S-feature (an augmented version of SI)
has unstable performance across different databases.

The R, T, and S-features encode zero, first, and second-
order local surface information, respectively; hence, they
probe different aspects of shapes. Thus, when joined together
into a larger multivariate feature, they would be more
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TABLE 4
Effect of the Invariant Scheme on DCG Performance

Fig. 7. Eye diagram illustration of DCG scores in comparing features and

databases. The iris (inner circle) is proportional to the inscribed DCG

score.

Fig. 8. Eye diagram illustration of DCG scores in comparing score

combinations and databases. The iris (inner circle) is proportional to the

inscribed DCG score.



effective. Ideally, these features should be fused by calculat-
ing their joint density function at designated target points.
However, we do not advise the use of multivariate features
with dimensions greater than five because the quality of KDE
degrades due to curse of dimensionality and also descriptors
become prohibitively large. An alternative way to benefit
from them simultaneously is score fusion, for example, by
summing their individual distance values. Although this
unsupervised score fusion approach cannot exploit potential
correlations between features, it constitutes a working
alternative to combine shape similarity information from
different descriptors. There are more sophisticated ap-
proaches that use some supervision to learn the optimal set
of combination weights [43]. Fig. 8 depicts the DCG
performance of this basic score fusion scheme. We have
denoted score combinations with a “+” sign, e.g., R+T, since
we sum their distances. From Fig. 8, we observe that it is
always beneficial to sum the scores of the R and T-features.
S-score contributes only to SHREC-W and SCU databases,
and it actually worsens the performance for PSB. This is not
surprising given the unrealiable calculation of second-order
surface characteristics in low-quality meshes.

In Fig. 9, we display the precision-recall curves for the
four databases under the best score combinations. The DCG
performance ordering of DBF is SHREC-W 
 SCU 

ESB 
 PSB, where 
 denotes the performance order
relation. PSB is the most challenging database not only
because the numbers of objects (907) and classes (92) are
higher than the others, but, more importantly, its classifica-
tion is induced mostly by functionality-driven semantics.
Since form does not always follow functionality, discrimi-
nation relying solely on global shape description has its
limitations. It has been shown that such databases can profit
from some user interaction that incorporates functionality-
driven semantics in the search criteria [43]. In Fig. 10, we
depict the repartition of PSB classes obtained by multi-
dimensional scaling (MDS), applied on the average be-
tween-class distances given by our descriptors. MDS is a
method to map pairwise dissimilarities to a lower dimen-
sional display where the distance ordering between pairs of
entities is preserved as much as possible [44]. The MDS
mapping of PSB classes is open to many interesting
observations showing that DBF captures functionality-
driven semantics to some extent. For instance, in the

southwestern part of the map, we see a clustering of sharp
object classes, such as axe, knife, shovel, and sword. Fig. 10
provides many more of such visible groupings.

The least challenging database seems to be SHREC-W.
Although it contains a small number of shape classes
relative to the remainder, the fact that its classification is
induced by topological equivalences makes it a difficult
database to describe by geometry-based methods like ours.
It is interesting to observe that the geometry-based DBF
performs so well on SHREC-W. We also note that, in the
Watertight Track of the SHREC’07 event, our shape
description scheme had overall the second rank, out-
performing other geometry-based methods [42]. The per-
formance on ESB as measured by precision-recall is less
impressive than the performance reflected by the DCG
score (75.7 percent). In fact, the performance on ESB for
Recall < 0:4 is worse than on the more difficult PSB where
our method attains 65.9 percent DCG. It seems that on ESB,
DBF does not always find the correct match in the upper
part of the list but that it is eventually capable of retrieving
them, thus lifting the DCG to a satisfactory value.

5.4 Database Dependence of the Bandwidth
Parameters

Table 5 summarizes the performance changes due to
bandwidth parameters estimated in a given database, but
used to compute descriptors in another database. In this table,
the row of a cell indicates the database on which descriptors
are computed and its column indicates the database from
which bandwidth parameters are estimated. Accordingly,
diagonal cells corresponding to a certain descriptor must
have zeroes while other cells contain performance drops or
increases as indicated by the algebraic sign of the perfor-
mance differential. It is encouraging to observe that, in
general, the performance does not significantly depend on
the training database, that is, the database where bandwidth
parameters are estimated. Some minor gains or losses may
occur. Exceptions are the S-descriptor when the ESB is used
for bandwidth estimation and, to a lesser extent, the
T-descriptor when SCU or SHREC-W are chosen. In fact,
we can anticipate the degradation in the performance of the
S-descriptor when the bandwidth is estimated from ESB
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Fig. 9. Precision-recall curves for the four databases under the best

score combinations

Fig. 10. Multidimensional scaling map for PSB Test Set classes.



because this database consists of machine part models for
which the second order SI-feature cannot faithfully
describe the local shape. If bandwidth parameters are to
be estimated from one database and then used over several
others, intuition tells that the training database must
possess as much variety as possible: In this context, we
can recommend bandwidths estimated from PSB.

5.5 Comparative Performance Analysis

5.5.1 Retrieval Comparisons on PSB

In this section, we first compare the retrieval performance
of DBF against histogram-based, transform-based, and

2D view-based shape description methods on PSB. The
statistics given in Table 6 are taken from either their original
works or the survey study in [23]. For DBI, SIL, and DSR,
we have used the executables provided in [25]; for CAH
and 3DHT, we have used our own implementation. For
DBF, we have taken the Inv-L1 score combination of R and
T descriptors. Fig. 11 illustrates the performance landscape
using a DCG versus NN scatter plot, where the methodo-
logical category of a descriptor is indicated by a symbol,
e.g., transform-based methods are marked as black circles.
Top descriptors are CRSP, DSR, and DBF with very close
performance scores, within a DCG difference less than
1 percent. DCG and NN performances are, in general,
positively correlated except for the Spherical Wavelet
Descriptor (SWD), which has a very good DCG but a poor
NN score. It seems that SWD is able to retrieve models
correctly, but with a lower ranking. We also observe that
our DBF method has the best NN performance among all.

Joint consideration of DCG and NN performances
suggests the following methodological clusters: fCRSP;
DSR;DBFg 
 2D V iews 
 Transforms 
 Histograms. We
draw the following conclusions concerning the effectiveness
of these methods:

Invariant Matching after PCA Normalization Improves the
Performance. Top performing methods fCRSP,DSR,DBFg
all use PCA-based pose normalization rather than adhering
to descriptors that are pose-invariant by definition. How-
ever, they also take additional measures to enhance
invariance. For example, CRSP adopts a double pose
normalization strategy incorporating an additional PCA
procedure applied to surface normals [33], while DBF
benefits from an invariant matching scheme for coordinate
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TABLE 5
DCG Differences due to Bandwidth Parameters Estimated from

a Given Database for the R, T, and S-Descriptors

TABLE 6
Retrieval Statistics (Percent): State-of-the-Art 3D Shape Descriptors on PSB Test Set

Fig. 11. Performance plot of DCG versus NN of the 3D shape descriptors evaluated on PSB Test Set. The legends in the inset denote the

methodological categories, e.g., the circle represents histogram-based methods.



axis labelings and mirror reflections. Comparison of
performances indicates that it is preferable to work with
absolute features (embedded in a canonical coordinate
frame like the one obtained with PCA) rather than with
features that are invariant by definition (as in RISH [31]).

Information Fusion Boosts the Performance. Two of the top
performing methods, DSR and DBF, combine different
types of shape information to boost the retrieval perfor-
mance. This suggests that the performance can be improved
even further by using a diverse set of descriptors with
complementary shape description capabilities, as will be
further addressed in detail in the next section.

Multiview 2D Data Capture 3D Shape Characteristics Well.
The hybrid DSR-descriptor from the top cluster is based
upon two 2D view-based descriptors (DBI and SIL) which,
along with LFD, have generally better performance than
3D transform-based and histogram-based methods. This
proves that describing a 3D object by a collection of
2D views leads to effective retrieval algorithms.

Distribution-Based Methods can be Effective. Histogram-
based descriptors can be viewed as methodological ances-
tors of DBF, as both approaches rely on the idea of
accumulating feature information to obtain a global shape
description. While histogram-based methods are placed at
the lower end of the performance landscape, DBF is in the
top cluster. The lessons learned are twofold: Applying the
right density estimation scheme (i.e., KDE) captures
shape information that is missed by histograms and a
multivariate local surface characterization is essential for
effective retrieval.

Table 7 provides average extraction, comparison, and
total matching times for the R+T+S descriptor combination
on a Pentium 4 PC (2.4 GHz CPU, 2 GB RAM) over all
databases. It can be observed from this table that DBF
descriptors can be very efficiently extracted and compared.
First, descriptor extraction, which is dominated by density
estimation, can be performed rapidly thanks to FGT (cf.
Section 4.3). Notice that the density estimation time is
proportional to the mesh resolution, so that this step can
be performed in OðK þNÞ � OðKÞ since the number of

observations K (i.e., the number of triangles per mesh) is

usually much higher than the number of targets N (i.e., the

size of the descriptor). Second, the complexity of comparing

two descriptors (of type R or T) is just 48 times the

complexity of a vector-to-vector distance computation (cf.

Section 4.2). Consequently, it takes only �1 second to match

a query descriptor against a database of �1,000 objects (see

the sixth row of Table 7). Furthermore, even without any

dimensionality reduction and compression, the storage of

these descriptors coded with 16-bit double precision costs

only 12 KB on average per object.
As a final remark, we note that even better retrieval

performance on the PSB data set has been reported using

the priority-driven search (PDS) method [26]. PDS belongs

to the paradigm of matching by feature correspondences

with no underlying global and compact shape description.

However, as the authors report in [26], this algorithm

demands computationally intensive database preprocessing

(4-5 minutes per object, 200-300 times slower than DBF),

considerable storage size (100 KB per object, 10 times more

than DBF), and more time to find matches than descriptor-

based methods. The DCG score of PDS is reported as

75.9 percent on PSB database, 10 percent better than the

cluster fCRSP,DSR,DBFg, indicating that, performance-

wise, there is more way to go for descriptor-based 3D shape

retrieval schemes.
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TABLE 7
Average Extraction, Comparison, and Total Matching Times (Seconds) for the R+T+S Descriptor Combination

(on a Pentium 4 PC 2.4 GHz CPU, 2 GB RAM)

TABLE 8
DCG (Percent) Precision versus Recall of DBF, DSR, and

Their Combinations DBF+DSR on the Four Tested Databases

Fig. 12. Precision Versus Recall of DBF, DSR, and their combinations

DBF+DSR on all databases tested.



5.5.2 DBF versus DSR: A Closer Look over All

Databases

Now, we carry out a more detailed comparison of DBF with

DSR, our nearest competitor, over all databases. As can be

seen from Tables 6 and 8, while DSR is better than DBF on

PSB by 0.6 percent DCG, our method outperforms DSR on

the other databases (on SCU by 1.7 percent, on SHREC by

3.5 percent, on ESB by 1.7 percent). Precision-recall curves

in Fig. 12 show that 1) on PSB, performances are more or

less equivalent for Recall < 0:5; 2) on SCU, a noticeable

difference in favor of DBF occurs after Recall � 0:4, and

3) on SHREC-W and ESB, there are clear performance gaps

in favor of DBF for all recall values.

As depicted in Fig. 13, the distribution of class-wise DCG

differences between DBF and DSR (DCGDBF �DCGDSR) is

symmetric, indicating that, in half of the PSB shape

categories, DBF is better than DSR and vice versa (category

names can be seen from Fig. 13). This suggests that DBF and

DSR are of complementary nature performance-wise; hence,

a combination of these two powerful descriptors can be

beneficial to further improve the performance on PSB.

Table 8 and Fig. 12 show the effect of summing the similarity

scores of DBF with those of DSR, in which case we obtain a

DCG of 70.2 percent on PSB, a 4 percent gain over DBF or

DSR alone. For other databases, however, the improvement

remains rather limited. Fig. 14 illustrates the benefits of the

combination on a sample query from PSB.
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Fig. 13. Histogram of class-wise DCG differentials between DBF and DSR (DCGDBF �DCGDSR).

Fig. 14. A “race-car” query retrieved using DBF (a), using DSR (b). and (c) using the combination DBF+DSR.



6 CONCLUSION

In this work, we have provided a detailed analysis of the
density-based shape descriptors for 3D model retrieval. Our
framework decisively outperforms its histogram-based
ancestors and is also placed in the top league of 3D shape
descriptors as proven by extensive retrieval experiments on
several 3D model databases with varying mesh quality,
semantic content, and classification granularity. For in-
stance, on PSB database, DBF has the DCG value of
65.9 percent, which is approximately as good as the best
methods reported so far and 8.2 percent better than the
closest histogram-based 3DHT descriptor. Our main con-
clusion is that for distribution-based descriptors to be
effective in 3D model retrieval, they should rely on
exhaustive local characterizations via multivariate surface
features and they should employ kernel smoothing for pdf
estimation. A serendipitous observation concerns the
complementariness of two highly discriminative methods:
our DBF approach and the hybrid DSR descriptor (66.5 per-
cent DCG on PSB). After combining these two descriptors in
a totally unsupervised manner, we have obtained 70.2 per-
cent DCG on PSB. To our knowledge, this is the best
retrieval performance on PSB reported so far. Our research
in this domain continues with supervised similarity learn-
ing schemes adapted to the retrieval problem as in [43].

We have also shown that the pdf structure enjoys a
permutation property which can be used to guarantee
invariance against orthogonal transformations at the shape
matching stage. Even if, for the purpose of computational
efficiency, the set of orthogonal transformations is restricted
to coordinate axis relabelings and mirror reflections, the
proposed matching scheme yields better retrieval perfor-
mance than merely using L1-distance. A potential research
direction is toward developing algorithms which make use
of this permutation property of pdf-based descriptors for
correspondence-free 3D shape alignment.
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France.

REFERENCES

[1] S. Jayanti, K. Kalyanaraman, N. Iyer, and K. Ramani, “Developing
an Engineering Shape Benchmark for CAD Models,” Computer-
Aided Design, vol. 38, no. 9, pp. 939-953, Sept. 2006.

[2] S. Goodall, P.H. Lewis, K. Martinez, P.A.S. Sinclair, F. Giorgini,
M. Addis, M.J. Boniface, C. Lahanier, and J. Stevenson,
“SCULPTEUR: Multimedia Retrieval for Museums,” Proc. Third
Int’l Conf. Image and Video Retrieval, pp. 638-646, 2004.

[3] P. Daras, D. Zarpalas, A. Axenopoulos, D. Tzovaras, and
M.G. Strintzis, “Three-Dimensional Shape-Structure Comparison
Method for Protein Classification,” IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics, vol. 3, no. 3, pp. 193-207, July-Sept.
2006.

[4] B. Bustos, D.A. Keim, D. Saupe, T. Schreck, and D.V. Vranic,
“Feature-Based Similarity Search in 3D Object Databases,” ACM
Computing Surveys, vol. 37, no. 4, pp. 345-387, 2005.

[5] Real-Time 3D Models, http://www.3drt.com/, 2009.
[6] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani,

“Three-Dimensional Shape Searching: State-of-the-Art Review
and Future Trends,” Computer-Aided Design, vol. 37, no. 5,
pp. 509-530, Apr. 2005.

[7] J.W.H. Tangelder and R.C. Veltkamp, “A Survey of Content Based
3D Shape Retrieval Methods,” Multimedia Tools and Applications,
2008.

[8] C.B. Akgül, B. Sankur, Y. Yemez, and F. Schmitt, “Density-Based
3D Shape Descriptors,” EURASIP J. Advances in Signal Processing,
vol. 2007, Article ID 32,503, p.16, 2007, doi: 10.1155/2007/32503.

[9] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape
Distributions,” ACM Trans. Graphics, vol. 21, no. 4, pp. 807-832,
2002.

[10] Y. Liu, H. Zha, and H. Qin, “The Generalized Shape Distributions
for Shape Matching and Analysis,” Proc. IEEE Int’l Conf. Shape
Modeling and Applications, June 2006.

[11] E. Paquet and M. Rioux, “Nefertiti: A Query by Content Software
for Three-Dimensional Models Databases Management,” Proc.
Int’l Conf. Recent Advances in 3D Digital Imaging and Modeling,
p. 345, 1997.

[12] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl, “3D
Shape Histograms for Similarity Search and Classification in
Spatial Databases,” Proc. Sixth Int’l Symp. Advances in Spatial
Databases, pp. 207-226, 1999.

[13] B.K.P. Horn, “Extended Gaussian Images,” Proc. IEEE, vol. 72,
pp. 1671-1686, 1984.

[14] S.B. Kang and K. Ikeuchi, “The Complex EGI: A New Representa-
tion for 3D Pose Determination,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 15, no. 7, pp. 707-721, July 1993.

[15] T. Zaharia and F. Prteux, “Shape-Based Retrieval of 3D Mesh
Models,” Proc. IEEE Int’l Conf. Multimedia and Expo, Aug. 2002.

[16] D.W. Scott, Multivariate Density Estimation, Theory, Practice and
Visualization. Wiley, 1992.

[17] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002.

[18] A. Johnson and M. Hebert, “Using Spin Images for Efficient
Object Recognition in Cluttered 3D Scenes,” IEEE Trans. Pattern
Analysis and Machine Intelligence vol. 21, no. 5, pp. 433-449, May
1999.

[19] C.B. Akgül, B. Sankur, Y. Yemez, and F. Schmitt, “Multivariate
Density-Based 3D Shape Descriptors,” Proc. Shape Modeling Int’l
(SMI ’07), June 2007.

[20] L. Greengard and J. Strain, “The Fast Gauss Transform,” SIAM
J. Scientific and Statistical Computing, vol. 12, pp. 79-94, 1991.

[21] C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis, “Improved
Fast Gauss Transform and Efficient Kernel Density Estimation,”
Proc. Int’l Conf. Computer Vision, vol. 1, p. 464, 2003.

[22] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On Visual
Similarity Based 3D Model Retrieval,” Computer Graphics Forum,
vol. 22, pp. 223-232, Sept. 2003.

[23] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The
Princeton Shape Benchmark,” Proc. Shape Modeling Int’l, pp. 167-
178, 2004.

[24] D.V. Vrani�c, “3D Model Retrieval,” PhD dissertation, Univ. of
Leipzig, 2004.

[25] D.V. Vrani�c, Tools for 3D Model Retrieval, 2005. http://
merkur01.inf.uni-konstanz.de/3Dtools/.

[26] T. Funkhouser and P. Shilane, “Partial Matching of 3D Shapes
with Priority-Driven Search,” Proc. Symp. Geometry Processing,
June 2006.

[27] H. Duta�gaci, B. Sankur, and Y. Yemez, “Transform-Based
Methods for Indexing and Retrieval of 3D Objects,” Proc. Fifth
Int’l Conf. 3D Digital Imaging and Modeling, June 2005.

[28] J. Ricard, D. Coeurjolly, and A. Baskurt, “Generalizations of
Angular Radial Transform for 2D and 3D Shape Retrieval,”
Pattern Recognition Letters, vol. 26, no. 14, pp. 2174-2186, 2005.

[29] P. Daras, D. Zarpalas, D. Tzovaras, and M.G. Strintzis, “Shape
Matching Using the 3D Radon Transform,” Proc. Second Int’l Symp.
3D Data Processing, Visualization, and Transmission, pp. 953-960,
2004.

1132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009



[30] D. Zarpalas, P. Daras, A. Axenopoulos, D. Tzovaras, and
M.G. Strintzis, “3D Model Search and Retrieval Using the
Spherical Trace Transform,” EURASIP J. Advances in Signal
Processing, vol. 2007, Article ID 23 912, p.14, 2007,
doi:10.1155/2007/23912.

[31] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation
Invariant Spherical Harmonic Representation of 3D Shape
Descriptors,” Proc. 2003 Eurographics/ACM SIGGRAPH Symp.
Geometry Processing, pp. 156-164, 2003.

[32] D.V. Vrani�c, “An Improvement of Rotation Invariant 3D Shape
Descriptor Based on Functions on Concentric Spheres,” Proc. IEEE
Int’l Conf. Image Processing, pp. 757-760, Sept. 2003.

[33] S.P.P. Papadakis, I. Pratikakis, and T. Theoharis, “Efficient 3D
Shape Matching and Retrieval Using a Concrete Radialized
Spherical Projection Representation,” Pattern Recognition, vol. 40,
no. 9, pp. 2437-2452, 2007.

[34] H. Laga, H. Takahashi, and M. Nakajima, “Spherical Wavelet
Descriptors for Content-Based 3D Model Retrieval“ Proc. IEEE
Int’l Conf. Shape Modeling and Applications, pp. 15-25, 2006.

[35] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology
Matching for Fully Automatic Similarity Estimation of 3D
Shapes,” Proc. ACM SIGGRAPH, pp. 203-212, Aug. 2001.

[36] T. Tung and F. Schmitt, “The Augmented Multiresolution Reeb
Graph Approach for Content-Based Retrieval of 3D Shapes,” Int’l
J. Shape Modeling, vol. 11, no. 1, June 2005.

[37] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton
Based Shape Matching and Retrieval,” Proc. Shape Modeling Int’l,
p. 130, 2003.

[38] G. Taubin, “Estimating the Tensor of Curvature of a Surface from
a Polyhedral Approximation,” Proc. Fifth Int’l Conf. Computer
Vision, p. 902, 1995.

[39] M.P. do Carmo, Differential Geometry of Curves and Surfaces.
Prentice-Hall, 1976.

[40] C. Dorai and A.K. Jain, “COSMOS—A Representation Scheme for
3D Free-Form Objects,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 10, pp. 1115-1130, Oct. 1997.
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Department of Télécom Paris (�Ecole Nationale
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Télécom Paris (�Ecole Nationale Supérieure des
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