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Template Matching 
• Goal: find       in image 

 

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches? 

– Correlation 

– Zero-mean correlation 

– Sum Square Difference 

– Normalized Cross Correlation 

 



Matching with Filters 
• Goal: find       in image 

• Method 0: filter the image with eye patch 

 

Input Filtered Image 
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What went wrong? 

f = image 

g = filter 



Matching with Filters 
• Goal: find       in image 

• Method 1: filter the image with zero-mean eye 

 

Input Filtered Image (scaled) Thresholded Image 
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True detections 

False 

detections 

mean of f 



Matching with Filters 
• Goal: find       in image 

• Method 2: SSD 

 

Input 1- sqrt(SSD) Thresholded Image 
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True detections 



Matching with Filters 

  

Can SSD be implemented with linear filters? 
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Matching with Filters 
• Goal: find       in image 

• Method 2: SSD 

 

Input 1- sqrt(SSD) 
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What’s the potential 

downside of SSD? 



Matching with Filters 
• Goal: find       in image 

• Method 3: Normalized cross-correlation 
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Matlab: normxcorr2(template, im) 

mean image patch mean template 



Matching with Filters 
• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Input Normalized X-Correlation Thresholded Image 

True detections 



Matching with Filters 
• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Input Normalized X-Correlation Thresholded Image 

True detections 



Q: What is the best method to use? 

 

A: Depends 

• SSD: faster, sensitive to overall intensity 

• Normalized cross-correlation: slower, invariant to 
local average intensity and contrast 

• But really, neither of these baselines are 
representative of modern recognition. 



Q: What if we want to find larger or smaller eyes? 

 

 

 A: Image Pyramid 



Review of Sampling 

 

Low-Pass 
Filtered Image 

Image 

Gaussian 

Filter Sample 
Low-Res 
Image 



Gaussian Pyramid 

Source: Forsyth 



Template Matching with Image Pyramids 

 

Input: Image, Template 

1. Match template at current scale 

 

2. Downsample image 

 

3. Repeat 1-2 until image is very small 

 

4. Take responses above some threshold, perhaps with 
non-maxima suppression 



Coarse-to-Fine Image Registration 
1. Compute Gaussian pyramid 

2. Align with coarse pyramid 

3. Successively align with finer 
pyramids 
– Search smaller range 

 

 

Why is this faster? 

 

Are we guaranteed to get the same 
result? 



2D Edge Detection Filters 

      is the Laplacian operator: 

Laplacian of Gaussian 

Gaussian derivative of Gaussian 



Laplacian Filter 

Gaussian 
unit impulse 

Laplacian of Gaussian 

Source: Lazebnik 



Computing Gaussian/Laplacian 
Pyramid 

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html 

Can we reconstruct the original 

from the laplacian pyramid? 



Laplacian pyramid 

Source: Forsyth 



Major uses of image pyramids 
 

• Compression 
 

• Object detection 
– Scale search 
– Features 

 
• Detecting stable interest points  

 
 

• Registration 
– Course-to-fine 

 



Application: Representing Texture 

Source: Forsyth 



Texture and Material 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ 



Texture and Orientation 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ 



Texture and Scale 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ 



What is texture? 

 

 Regular or stochastic patterns caused by bumps, 
grooves, and/or markings 

 



How can we represent texture? 

 

• Compute responses of blobs and edges at various 
orientations and scales 

 

 



Overcomplete representation: filter banks 

LM Filter Bank 

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html 



Filter banks 

• Process image with each filter and keep responses 
(or squared/abs responses) 



How can we represent texture? 

 

• Measure responses of blobs and edges at various 
orientations and scales 

 

• Idea 1: Record simple statistics (e.g., mean, std.) of 
absolute filter responses 

 

 

 



Can you match the texture to the 
response? 

Mean abs responses 

Filters 
A 

B 

C 

1 

2 

3 



Representing texture by mean abs 
response 

Mean abs responses 

Filters 



Representing texture 

• Idea 2: take vectors of filter responses at each pixel and 
cluster them, then take histograms (more on in later weeks) 
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Resources 

Books 
R. Szeliski, Computer Vision: Algorithms and Applications, 2010 – available online 

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003 

L. G. Shapiro and G. C. Stockman, Computer Vision, 2001 

Web 
CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision 

http://homepages.inf.ed.ac.uk/rbf/CVonline/  

Dictionary of Computer Vision and Image Processing 

http://homepages.inf.ed.ac.uk/rbf/CVDICT/  

Computer Vision Online 

http://www.computervisiononline.com/  

Programming 
Development environments/languages: Matlab,  Python and C/C++ 

Toolboxes and APIs: OpenCV, VLFeat Matlab Toolbox, Piotr's Computer Vision Matlab Toolbox, 
EasyCamCalib Software, FLANN, Point Cloud Library PCL, LibSVM, Camera Calibration Toolbox for 
Matlab 
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