Computer Vision Course Lecture 03

Linear Filtering Filter Banks Multiresolution

Ceyhun Burak Akgül, PhD cba-research.com

2D Image

Tools:
Geometry
- Machine Learning
- Calculus
- Signal Processing
- graph Theory
- Optimization

Photo credit: Olivier Teboul vision.mas.ecp.fr/Personnel/teboul

Spring 2015
Last updated 11/03/2015

Course Outline

Image Formation and Processing

Light, Shape and Color
The Pin-hole Camera Model, The Digital Camera
Linear filtering, Filter banks, Multiresolution

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors Feature Matching and Hough Transform

Multiple Views and Motion

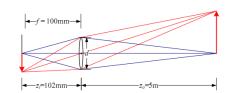
Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

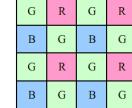
Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows





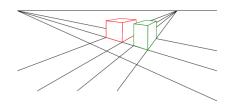


Image Filtering

Image filtering

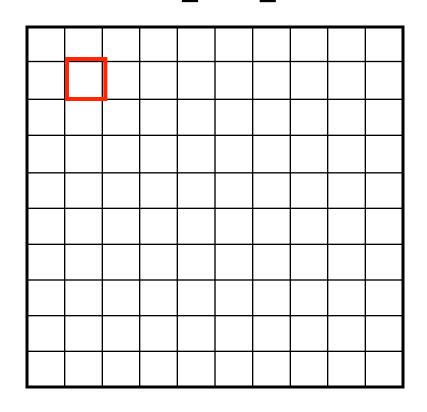
Compute a function of a local neighborhood at each image position

- Why?
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

 $g[\cdot,\cdot]$ $\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

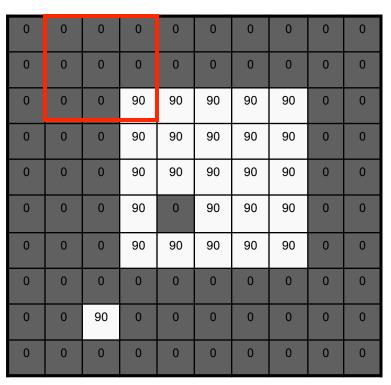
$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

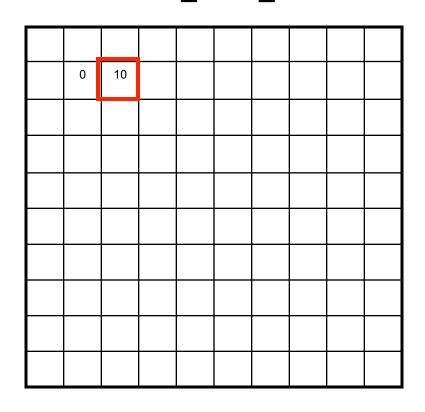
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
CBA Research Computer Vision

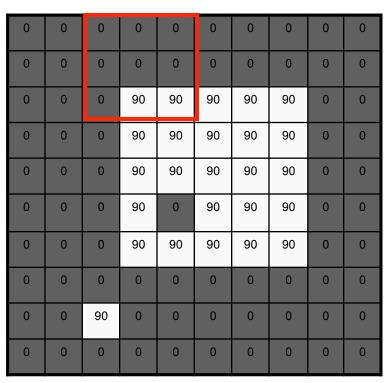
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

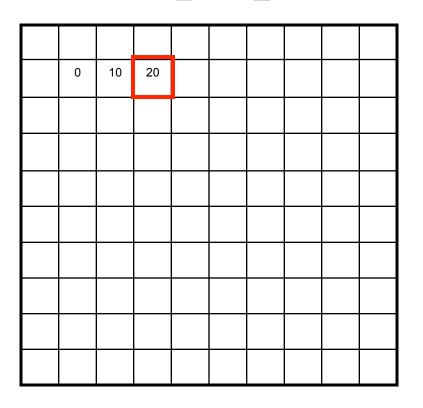




$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
CBA Research Computer Vision

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

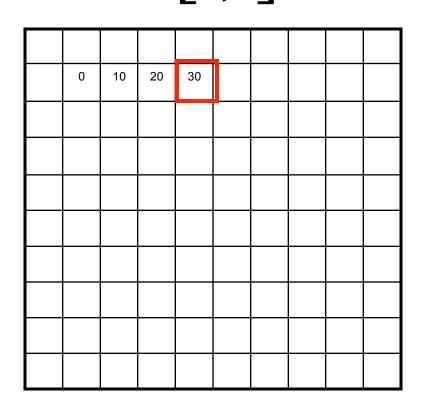




$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
CBA Research Computer Vision

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

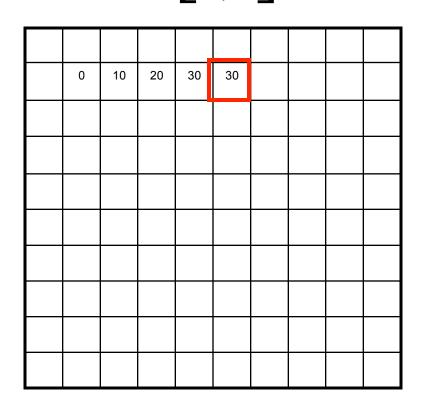
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
CBA Research Computer Vision

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

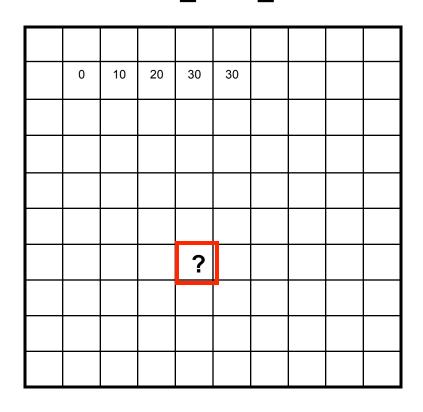
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

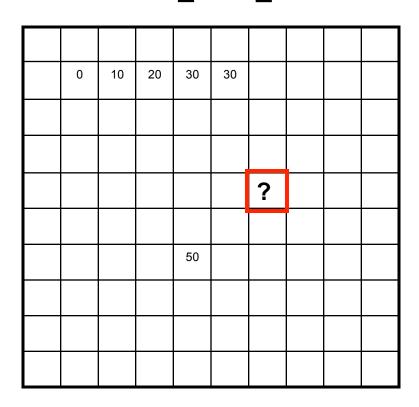
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

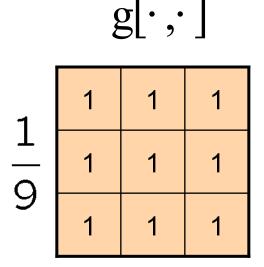
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



Smoothing with a Box Filter

O	rig	giı	nal

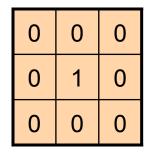
0	0	0
0	1	0
0	0	0

?

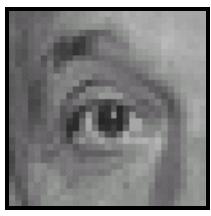
CBA Research Computer Vision

15

Original



Filtered (no change)



	Marie Street Street

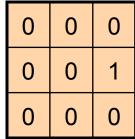
0 0

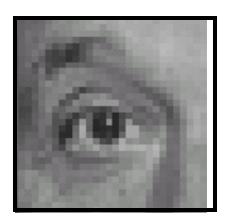
Original

CBA Research Computer Vision

17

Original





Shifted left By 1 pixel

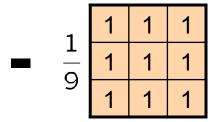
Original

0	0	0	1	1	1	1
0	2	0	■ 1	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

?

0	0	0
0	2	0
0	0	0

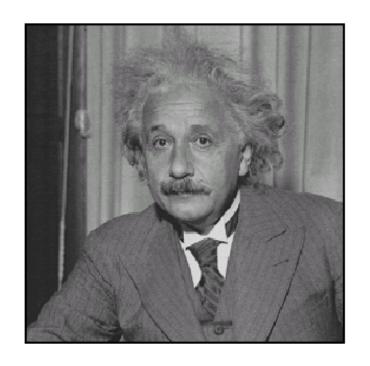


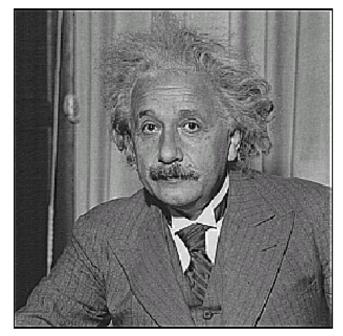
Original

Sharpening filter

- Accentuates differences with local average

Sharpening



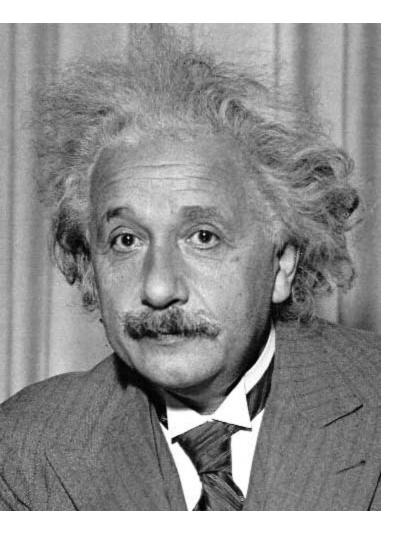


before

after

CBA Research Computer Vision

Other Filters

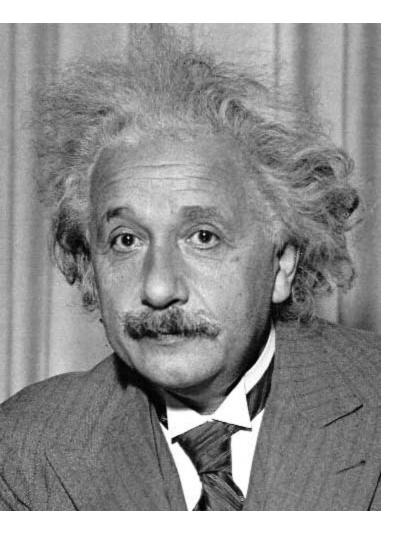


1	0	-1
2	0	-2
1	0	-1

Sobel

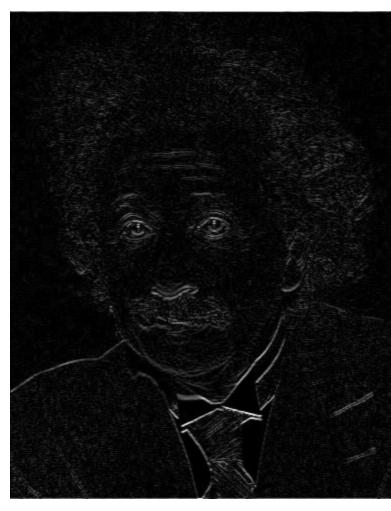
Vertical Edge (absolute value) 22

Other Filters



2	1
0	0
-2	-1
	0

Sobel



Horizontal Edge (absolute value) 23

Filtering in Matlab

2D Filtering

g=filter f=image

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Key Properties of Linear Filters

Linearity

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```

Any linear, shift-invariant operator can be represented as a convolution

More Properties

Commutative: a * b = b * a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality

Associative:
$$a * (b * c) = (a * b) * c$$

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

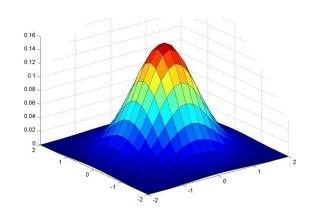
Distributes over addition: a * (b + c) = (a * b) + (a * c)

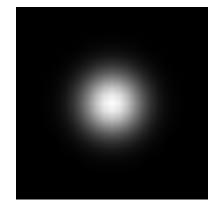
Scalars factor out: ka * b = a * kb = k (a * b)

Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

An Important One: Gaussian Filter

Weight contributions of neighboring pixels by proximity





0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Rule of thumb for Gaussian: Set filter half-width to about 3 σ

Smoothing with Gaussian Filter

Smoothing with Box Filter – revisited

Gaussian Filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of Gaussian Filters

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

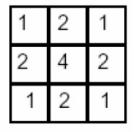
In this case, the two functions are the (identical) 1D Gaussian

Separability Example

2D convolution (center location only)

1	2	1		2
2	4	2	*	3
1	2	1		4

The filter factors into a product of 1D filters:



Perform convolution along rows:

Followed by convolution along the remaining column:

Practical Matters

What to do at the border of images?

The filter window falls off the edge of the image

Need to extrapolate

Methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Practical Matters

What to do at the border of images?

The filter window falls off the edge of the image

Need to extrapolate

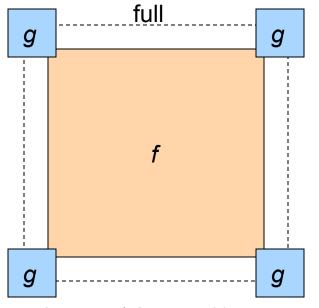
Methods:

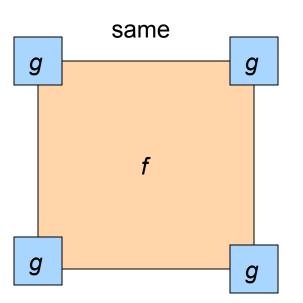
```
• clip filter (black): imfilter(f, g, 0)
```

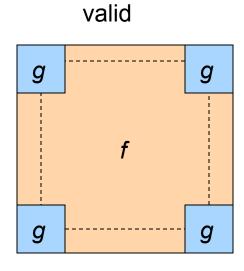
- wrap around::imfilter(f, g, 'circular')
- copy edge: imfilter(f, g, 'replicate')
- reflect across edge: imfilter(f, g, 'symmetric')

Practical Matters

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g



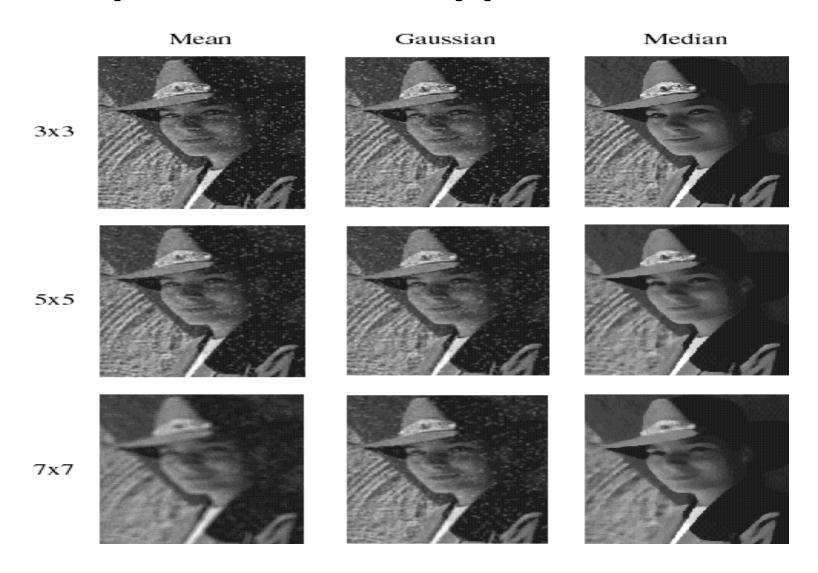




Median Filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Example: Salt and Pepper Noise



Practice Questions

Filtering Operator

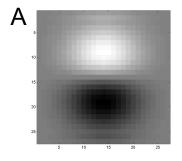
Fill in the blanks:

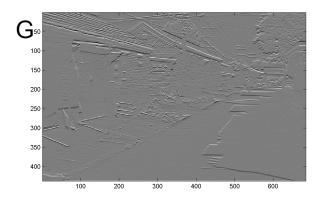
$$(a) = D * B$$

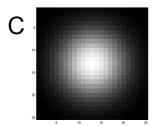
(b)
$$A = _{-} * _{-}$$

$$(C) F = D *$$

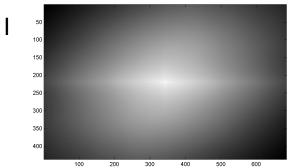
$$(d) = D * D$$







F



Course Outline

Image Formation and Processing

Light, Shape and Color
The Pin-hole Camera Model, The Digital Camera
Linear filtering, Filter banks, Multiresolution

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors Feature Matching and Hough Transform

Multiple Views and Motion

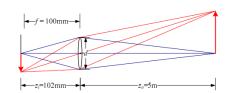
Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

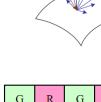
Segmentation and Grouping

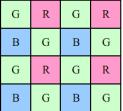
Segmentation by Clustering, Region Merging and Growing
Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

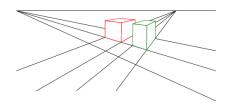
Detection and Recognition

Problems and Architectures Overview
Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows









Resources

Books

- R. Szeliski, Computer Vision: Algorithms and Applications, 2010 available online
- D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003
- L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing

http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: OpenCV, VLFeat Matlab Toolbox, Piotr's Computer Vision Matlab Toolbox, EasyCamCalib Software, FLANN, Point Cloud Library PCL, <u>LibSVM</u>, <u>Camera Calibration Toolbox for Matlab</u>