Computer Vision Course Lecture 01

Introduction

Ceyhun Burak Akgül, PhD <u>cba-research.com</u>

Photo credit: Olivier Teboul vision.mas.ecp.fr/Personnel/teboul

Spring 2015 Last updated 10/02/2015

About Me

- **2002 2004 MS in EE, Boğaziçi Univ. EE Dept.** Analysis of Functional Near Infrared Spectroscopy Signals
- **2004 2007 PhD in Computer Vision, Télécom ParisTech & Boğaziçi Univ. EE Dept.** Density-Based Shape Descriptors and Similarity Learning for 3D Object Retrieval
- 2008 2009 Marie Curie Postdoctoral Researcher, Philips Research IRonDB Project: Content-based Indexing and Retrieval in MR Image Databases, Image-based Methods for Diagnozing Alzheimer's Disease
- **2010 2011** Senior Research Scientist, Vistek ISRA Vision Istanbul Machine Vision for Industrial Inspection Systems, Human-centric Computer Vision Face and Body Analysis, Behavior analysis, Object Tracking and Recognition
- **2011 2013 R&D Director, Vistek ISRA Vision Istanbul** Machine Vision for Industrial Inspection Systems, Human-Centric Computer Vision Face and Body Analysis, Behavior analysis, Object Tracking and Recognition
- 2014 → Founder and CTO, Vispera Information Technologies Istanbul Visual Recognition Solutions for the Retail Industry | vispera.co
- **2010** → Adjunct Faculty, Boğaziçi Univ. EE Dept. Data Mining for Visual Media, Image Analysis, MS and PhD Student Supervision

For projects, publications and courses, visit cba-research.com

In 1966, Minsky hired a first-year undergraduate student and assigned him a problem to solve over the summer...

Connect a television camera to a computer and get the machine to describe what it sees!

Marvin Minsky MIT Media Lab

... And the story started!

David Marr on Vision: "To tell what is where by looking"

Goals of Computer Vision

Estimate the shapes and properties of things Recognize objects Recognize people Recognize other structures Recognize places

Understand A Visual Scene

What humans see in this scene

What computers get from the camera

What modern computers vision programs are able to «understand» from this image

And what if the image is this one?

RGB Camera: Still and Motion (Video)

Linescan Camera: A sensor with a single line of CCDs

3D Structure Sensor: «Kinect-like» sensing

LIDAR*: Sensing the Earth

* LIDAR: Light Detection and Ranging

Medical Imaging: Looking inside

Optical Character Recognition

Digit recognition, AT&T Labs

License plate readers, Elsag

DataTrade Demo			100	Rotate
Not Negotiable 3653 South Avenue Sprougheld MC 65817		CATE Lab 1	-2006.	
ANTO THE Data Irade		\$53	.10	
by Headled Syly Sh	u Collans 10	100-001	DOLLARS	
Beingtown MO 65805	_	loid	1.00	
*****	2331.000.0 010	00		
			ne Produke	
ch No. 1001 Sequence No. 2				
Flouting No.	Deck Account No.	Deck No.	Check Amou	nt
	46 721	144999	100 0	53 10

Face Detection and Recognition

Many new digital cameras now detect faces

With Facebook's New Tech, You'll Never Need to Know Friends' Faces Again

A Basaarch Computer Misian

Object Recognition

LaneHawk prevents thefts in supermarkets *DataLogic*

Localize and count products in supermarket shelves Vispera Information Technologies | vispera.co

Object Recognition

Recognize places and get related web content

Recognize movie posters, newspapers and the like Kooba API (acquired by Qualcomm)

Recognize CD covers, books, barcodes, and the like *FireFly Technology built-in FirePhone by Amazon*

Object Recognition

LeafSnap recognizes trees by the pictures of their leaves

Visual Concept Detection

Impala mobile app automatically organizes photos into albums *EUVision (acquired by Qualcomm)*

Image/Video Search and Annotation

ABOUT TECHNOLOGY

API ~ NEWS

JOBS CONTACT

Recognize thousands of concepts

Classify, Localize & Search by Similarity

Our algorithms enable fine grained classification, localization of objects in images and similarity search based on the combination of semantic and visual

properties.

3D Reconstruction/View Synthesis

Photosynth reconstructs the world in 3D from 2D pictures taken from arbitrary views and synthesizes new views / *Microsoft Research*

3D Reconstruction/View Synthesis

Smart Cars

Google Self-Driving Car

MobileEye

Vision systems in high-end BMW, GM, Volvo models

Sports Analytics

Kinect: A Phenomenon on its own

Course Outline

Image Formation and Processing

Light, Shape and Color

The Pin-hole Camera Model, The Digital Camera Linear filtering, Filter banks, Multiresolution

Feature Detection and Matching

Edge Detection, Interest Points: Corners and Blobs Local Image Descriptors Feature Matching and Hough Transform

Multiple Views and Motion

Geometric Transformations, Camera Calibration Feature Tracking , Stereo Vision

Segmentation and Grouping

Segmentation by Clustering, Region Merging and Growing Advanced Methods Overview: Active Contours, Level-Sets, Graph-Theoretic Methods

Detection and Recognition

Problems and Architectures Overview

Statistical Classifiers, Bag-of-Words Model, Detection by Sliding Windows

Resources

Books

R. Szeliski, Computer Vision: Algorithms and Applications, 2010 – available online

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003

L. G. Shapiro and G. C. Stockman, Computer Vision, 2001

Web

CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/

Dictionary of Computer Vision and Image Processing

http://homepages.inf.ed.ac.uk/rbf/CVDICT/

Computer Vision Online

http://www.computervisiononline.com/

Programming

Development environments/languages: Matlab, Python and C/C++

Toolboxes and APIs: <u>OpenCV</u>, <u>VLFeat Matlab Toolbox</u>, <u>Piotr's Computer Vision Matlab Toolbox</u>, EasyCamCalib Software, FLANN, Point Cloud Library PCL, <u>LibSVM</u>, <u>Camera Calibration Toolbox for</u> <u>Matlab</u>

Course Evaluation

4 Small Projects (60% in Total)

- 1 Paper Reading and Presentation Assigment (20%)
- 1 Semester Project (20%)

Project Deliverables

Code: Inline-commented and I/O documented

Data: Dataset and Outputs

Full Presentation: Describe the problem, report the state-of-the-art, describe the approach taken, report the experimental results, discuss and conclude