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surface may compensate for the nonuniform distribution of
triangles, provided that a sizeable number of surface points
is taken. Although the random sampling approach proves to
be useful for computing histograms of scalar features [10], it
is not practical in the multidimensional case due to the curse
of dimensionality: the number of samples required to fill in
the multivariate histogram bins increases exponentially as di-
mensionality increases [13], resulting in a significant extra
computational load which is not affordable for most applica-
tions such as retrieval.

Our density-based framework makes a more effective use
of each triangle and also takes care of the nonuniformity of
their areas and orientations without resorting to expensive
random sampling. First, we do not use samples but exploit
the information in the whole triangle area using an integra-
tion scheme, as described in Section 3.3. Second, we resort to
nonparametric kernel density estimation (KDE) with rule-
based bandwidth parameter assignment [13, 14]. In other
words, local geometric information emanating from each
mesh triangle contributes to the geometric feature density
by the intermediary of a kernel. Thus local evidences about
surface shape are accumulated at targeted density points to
result in a global shape description. Third, we use a Gaus-
sian kernel. Since the Gaussian density is completely deter-
mined by its first two moments, we only need to estimate the
mean and the variance of the feature for each triangle. For
certain cases, these moments can be approximated very ac-
curately by making use of the geometry of a triangle in 3D
space. The choice of Gaussian kernel brings in the additional
advantage of alleviating the computational burden of calcu-
lating large sums of Gaussians, as occur in the proposed set
of descriptors, by enabling the use of the efficient fast Gauss
transform (FGT) [15, 16]. Thus the main contribution of
our work is to propose an analytical framework for the ex-
traction of 3D descriptors from local surface features that
characterize the object geometry. This framework computes
probability densities of local features instead of their conven-
tional histograms. Here, we interpret histograms and densi-
ties in a broad sense: any descriptor that uses an accumulator
scheme of measured quantities qualifies as a histogram-based
descriptor. As a byproduct, we also introduce some novel lo-
cal features.

The rest of the paper is structured as follows. In Section 2,
we provide an overview of histogram-based 3D shape de-
scriptors. Section 3 introduces the local geometric features
we have considered and describes the KDE-based computa-
tional framework. In Section 4, we illustrate the retrieval per-
formance of our method in comparison to other equivalent
or similar histogram-based descriptors [8–12]. In Section
5, we draw conclusions and discuss further directions in
density-based 3D shape descriptors.

2. PREVIOUS WORK ON 3D SHAPE DESCRIPTORS

There are two main paradigms of 3D shape description,
namely, graph-based and vector-based. Graph-based repre-
sentations are more elaborate and complex, harder to ob-
tain, but represent shape properties in a more faithful and

intuitive manner. Shock graphs [17], multiresolution Reeb
graphs [6, 18, 19], and skeletal graphs [20] are methods that
fall in this category. However, they do not generalize eas-
ily and hence they are not very convenient to use in unsu-
pervised learning, for example, to search for natural shape
classes in a database. Vector-based representations, on the
other hand, are more easily computed. Although they do not
necessarily conduce to plausible topological visualizations,
they can be naturally employed in both supervised and unsu-
pervised classification tasks. Typical vector-based representa-
tions are extended Gaussian images [8, 9], cord and angle his-
tograms [11], 3D shape histograms [21], spherical harmon-
ics [7, 22–24], and shape distributions [10]. In this work, we
are exclusively interested in histogram-based 3D shape de-
scriptors that constitute a particular branch of vector-based
representations. In the following, we provide a brief overview
of histogram-based descriptors. References [1, 2, 4] provide
also excellent surveys.

In [11], Paquet and Rioux present cord and angle his-
tograms for matching 3D objects. A “cord,” which is actu-
ally a ray, joins the barycenter of the mesh with a trian-
gle center. The histograms of the length and of the angles
of these rays (with respect to a reference frame) are used
as the 3D shape descriptors. Although automatic determi-
nation of a canonical reference frame for 3D meshes is still
not totally solved [7], the common practice is to obtain the
eigendecomposition of the covariance matrix of the surface
points. The covariance matrix itself can be computed using
the mesh vertices, the triangle centers, or in a “continuous”
way as described in [7]. The resulting eigenvectors, which are
the orthogonal directions along which the mesh has maxi-
mal spread, are taken as a reference frame. Notice that the
eigendirections may not necessarily correspond to the “natu-
ral” pose of the object; however, they can serve as a canonical
reference frame. In conclusion, Paquet and Rioux [11] con-
sider the shape descriptors consisting of the ray length and
the relative ray angles with respect to the largest two eigen-
vectors. One shortcoming of all such approaches that reduce
the triangles to their center points is that they do not take
into consideration the size and shape of the mesh triangles.
First, because triangles of any size have equal weight in the
final shape distribution; second, because the triangle shapes
can be arbitrary, so that the center may not represent ade-
quately the impact of the triangle on the shape distribution.

In the shape distributions approach, Osada et al. [10] use
a collection of shape functions, which are geometrical quan-
tities estimated by a random sampling of the surface of the
3D object. Their shape functions are defined as the distance
of surface points to the center of mass of the model (D1),
the distance between two surface points (D2), the area of the
triangle defined by three surface points (D3), the volume of
the tetrahedron defined by four surface points (D4), and so
on. The descriptors of the object are then defined as the his-
tograms of these shape functions. The randomization of the
surface sampling process improves the estimation over Pa-
quet and Rioux’s approach [11], since a more representative
and dense set of surface points is used. Obviously, the his-
togram accuracy can be controlled with the sample size.
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Table 1: Invariance properties of histogram-based 3D shape descriptors.

Descriptor
Translation
invariance

Rotation
invariance

Scale
invariance

Cord histogram [11] No Yes No

Angle histogram [11] No No Yes

D1-distribution [10] No Yes No

D2-distribution [10] Yes Yes No

Shape histogram (shells) [21] No Yes No

Shape histogram (sectors) [21] No No No

EGI [8] Yes No No

CEGI [9] No No No

3DHT [12] No No No

Ankerst et al. use shape histograms for the purpose of
molecular surface analysis [21]. A shape histogram is defined
by partitioning the 3D space into concentric shells and sec-
tors around the center of mass of a 3D model. The histogram
is constructed by accumulating the surface points in the bins
(in the form of shells, sectors, or both) based on a nearest-
neighbor rule. Ankerst et al. [21] illustrate the shortcomings
of Euclidean distance to compare two shape histograms and
make use of a Mahalanobis-like quadratic distance measure
taking into account the distances between histogram bins.

Extended Gaussian images (EGI), introduced by Horn
[8], form another class of histogram-based 3D shape descrip-
tors. An EGI consists of a spherical histogram with bins in-
dexed by (θj ,ϕk), where each bin corresponds to some quan-
tum of the spherical azimuth and elevation angles (θ,ϕ) in
the range 0 ≤ θ < 2π and 0 ≤ ϕ < π. The histogram bins ac-
cumulate the count of the spherical angles of the surface nor-
mal per triangle, usually weighted by the triangle area. Kang
and Ikeuchi have extended the EGI approach by considering
the normal distances of the triangles to the origin [9]. Ac-
cordingly, each histogram bin accumulates a complex num-
ber whose magnitude and phase are the area of the triangle
and its signed distance to the origin, respectively. The result-
ing 3D shape descriptor is called complex extended Gaussian
images (CEGI) [9].

In [12], Zaharia and Prêteux present the 3D Hough trans-
form descriptor (3DHT) as a histogram constructed by accu-
mulating surface points over planes in 3D space. Each tri-
angle of the mesh contributes to each plane with a weight
equal to the projected area of the triangle on the plane but
only if the scalar product between their normals is higher
than a given threshold. Although we have not encountered in
the literature a direct comparison between 3DHT and EGI,
3DHT can be considered as a generalized version of EGI,
where concentric spherical shells of different radii are con-
structed around the object’s center of mass. One can con-
sequently conjecture that the 3DHT descriptor captures the
shape information better than the EGI descriptor, as will be
shown experimentally in Section 4.

An important property of a 3D shape descriptor is its
invariance to similarity transformations, that is, translation
(T), rotation (R), and scale (S) [1, 2, 4, 7]. In Table 1, we

summarize invariance properties of the histogram-based
shape descriptors discussed above.

3. THE PROPOSED FRAMEWORK FOR
DENSITY-BASED DESCRIPTORS

3.1. Local geometric features

We assume that each 3D shape is represented as a triangu-
lar mesh and that its center of mass coincides with the ori-
gin of the coordinate system. In what follows, capital italic
letter P stands for a point in 3D, a small case boldface let-
ter p = (px, py , pz) for its vector representation, n̂P =
(n̂P,x, n̂P,y , n̂P,z) for the unit surface normal vector at P when
P belongs to a surface M ⊂ R3, and 〈·, ·〉 for the usual dot
product.

We define a local geometric feature as a mapping S from
the points of a surface M ⊂ R3 into a d-dimensional space,
generally a subspace of Rd. Each dimension of this space cor-
responds to a specific geometric property that can be calcu-
lated at each point of the surface. For example, the distance
of a surface point to the center of the 3D shape is a one-
dimensional (d = 1) geometric feature, while the mesh trian-
gle normal n̂P is a three-dimensional feature vector (d = 3).
In this work, we consider three different multidimensional
local geometric features that we describe in the sequel.

The radial feature Sr at a point P is a 4-tuple defined as

Sr(P) �
(
rP , r̂P,x, r̂P,y , r̂P,z

)
with

rP �
√
p2
x + p2

y + p2
z ,

r̂P,x � px
rP

,

r̂P,y � py
rP

,

r̂P,z � pz
rP
.

(1)

Accordingly, Sr consists of a magnitude component rP mea-
suring the distance of the point P to the origin, and a direc-
tion component r̂P � (r̂P,x, r̂P,y , r̂P,z) that gives the orienta-
tion of the point P (see Figure 1). Observe that we can write
Sr also as Sr(P) = (rP , r̂P). The direction component r̂P is a
three-dimensional vector with unit norm; hence it lies on the
unit sphere.
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Figure 1: Radial and normal directions of a surface point.

The tangent plane-based feature St at a point P is a 4-tuple
defined as

St(P) = (dt,P , n̂P,x, n̂P,y , n̂P,z
)

with dt,P � rP
∣∣〈r̂P , n̂P

〉∣∣.
(2)

Similar to the Sr feature, St has a magnitude component dt,P ,
which stands for the distance of the tangent plane at P to the
origin, and a direction component n̂P = (n̂P,x, n̂P,y , n̂P,z) (see
Figure 1). Thus, we may write St(P) = (dt,P , n̂P). The normal
n̂P is a unit norm vector by definition and lies on the unit
sphere.

The cross-product feature Sc aims at encoding the relation-
ship between the former two features, namely, the radial fea-
ture Sr and the tangent plane-based feature St. To this end,
we define Sc at a point P as

Sc(P) �
(
rP , cP,x, cP,y , cP,z

)
�
(
rP , cP

)
with cP � r̂P × n̂P.

(3)

In much the same way as in Sr and St, Sc is decoupled into
a magnitude component rP and a direction component cP .
Notice, however, that cP is not a unit-norm vector unless the
angle between the radial direction r̂P and the normal direc-
tion n̂P is π/2. Both r̂P and n̂P being unit norm vectors, the
norm of cP is lower than or equal to unity and it lies inside
the unit ball.

The local geometric features presented above and their
invariance properties are summarized in Table 2.

3.2. Kernel density estimation

Given a set of observations {sk}Kk=1 for a random variable
(scalar or vector) S, the kernel approach to estimate the prob-
ability density of S is formulated in its most general form as

fS(s) =
K∑
k=1

wk

∣∣Hk

∣∣−1
K
(
H−1

k

(
s− sk

))
, (4)

Table 2: Local geometric features and their invariance properties
(assuming that the barycenter of the surface M is at the origin).

Feature
Component-wise

Overall invariance
invariance

Radial Sr
Magnitude rP : rotation

None
Direction r̂P : scale

Tangent plane St
Magnitude dt,P : rotation

None
Direction n̂P : scale

Cross-product Sc
Magnitude rP : rotation

None
Direction cP : scale

where K : Rd → R is a kernel function, Hk is a d × d ma-
trix composed of a set of design parameters called bandwidth
parameters (smoothing parameters or scale parameters) for
the kth observation, and wk is the importance weight asso-
ciated with the kth observation. The contribution of each
data point sk to the density function fS(s) at a target point
s is computed through the kernel function K scaled by the
matrix Hk and the weight wk. Thus KDE involves a data
set {sk}Kk=1 with the associated set of importance weights
{wk}Kk=1, the choice of a kernel function K and the setting
of bandwidth parameters {Hk}Kk=1.

We compute the probability density values of a certain
local geometric feature S from a set of observations {sk}Kk=1.
We assume that the 3D shape is represented as a triangular
mesh consisting of K triangles. Thus we can obtain an ob-
servation sk from each of the triangles in the mesh, as will
be explained in Section 3.3. Since, in general, the mesh is
made up of nonuniformly sized triangles, the data should be
weighted accordingly. A natural choice for the importance
weight wk of a data point sk is the ratio of the kth trian-
gle area to the total surface area, yielding

∑K
k=1 wk = 1. It is

known that the particular functional form of the kernel does
not significantly affect the accuracy of the estimator [14]. The
Gaussian kernel has become a popular choice, first because
it lends itself more easily to asymptotic error analysis [14];
and second, for the existence of efficient algorithms to cal-
culate large sums of Gaussians, as the fast Gauss transform
(FGT) already mentioned in the introduction [15, 16]. Ac-
tually, FGT is the dominant reason why we choose the Gaus-
sian kernel since computational efficiency is an important re-
quirement for 3D object retrieval [1, 2] (see Section 3.6 for
details).

The setting of the bandwidth parameters {Hk}Kk=1 is crit-
ical for an accurate kernel density estimation [14, 25]. For
the Gaussian kernel, the bandwidth matrix Hk simply
corresponds to the feature covariance matrix. For set-
ting/estimating the bandwidth parameters, there exist sev-
eral guidelines and computational methods with varying
complexity [14, 25]. We discuss different alternatives in
Section 3.4. The probability density function fS(s), when
computed over predefined target points using (4), results in
the shape descriptor sought for a given triangular mesh. The
methodology that we employ to choose the target points for
each specific feature is explained in Section 3.5.
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Figure 2: A local basis for a triangle in 3D.

3.3. Feature calculation

Given a d-dimensional local feature S = (S1, . . . , Sd), the
observation sk can be obtained from the mesh triangle Tk

by evaluating the value of S at the barycenter of the trian-
gle. However, the mesh triangles having in general arbitrary
shapes, the feature value at the barycenter may not be the
most representative one. The shape of the triangle should be
in some way taken into account in order to reflect the local
feature characteristics more faithfully. The expected value of
the local feature E{S | T} over the triangle T is more infor-
mative than the feature value only sampled at a single point,
the barycenter of the triangle.

Consider T as an arbitrary triangle in 3D space with ver-
tices A, B, and C represented by pA, pB, and pC, respectively,
(see Figure 2). By noting e1 = pB − pA and e2 = pC − pA,
we can obtain a parametric representation for a point P in-
side the triangle T as p = pA + xe1 + ye2, where the two
parameters x and y satisfy the constraints x, y ≥ 0 and
x + y ≤ 1. We assume that the point P is uniformly dis-
tributed inside the triangle T . Thus, the expected value of
the ith component of S, denoted by E{Si | T}, is given
by

E
{
Si | T

} =
∫∫

Ω
Si(x, y) f (x, y)dx dy, i = 1, . . . ,d, (5)

where Si(x, y) is the feature value at (x, y) and f (x, y) is the
probability density function of the pair (x, y) over the do-
main Ω = {(x, y) : x, y ≥ 0, x + y ≤ 1}. Accordingly,
f (x, y) = 2 when (x, y) ∈ Ω or zero otherwise. The in-
tegration is performed over the domain Ω. To approximate
(5), we apply Simpson’s 1/3 numerical integration formula
[26]. We avoid the arbitrariness in vertex labeling by consid-
ering the three permutations of the labels A, B, and C. This
yields us three approximations, which are in turn averaged to

yield

E
{
Si | T

} ≈
(

1
27

)(
Si
(

pA
)

+ Si
(

pB
)

+ Si
(

pC
))

+

(
4

27

)(
Si

(
pA + pB

2

)
+ Si

(
pA + pC

2

)

+ Si

(
pB + pC

2

))

+

(
4

27

)(
Si

(
2pA + pB + pC

4

)

+ Si

(
pA + 2pB + pC

4

)

+ Si

(
pA + pB + 2pC

2

))
.

(6)

Equation (6) boils down to take a weighted average of
feature values calculated at 9 points on the triangle.

3.4. Bandwidth selection

There are three levels of analysis at which the parameters in
the bandwidth matrix Hk involved in KDE can be chosen (see
(4) in Section 3.2).

(1) Triangle level: this option allows a distinct bandwidth
parameter for each triangle in the mesh. In principle, this
choice is very flexible since it does not make any assump-
tions about the shape of the kernel function and hence about
the shape of the kth triangle. In general, finding a KDE band-
width matrix specific to each observation is a difficult prob-
lem [25]. For the Gaussian kernel, however, estimation of the
bandwidth matrix Hk reduces to the estimation of the fea-
ture covariance matrix. The moment formula in (5) and its
numerical approximation in (6) can directly be used for mo-
ments of any order. For example, the (i, j)th component hi j
of H is computed by

hi j =
∫∫

Ω
Si(x, y)Sj(x, y) f (x, y)dx dy

−
∫∫

Ω
Si(x, y) f (x, y)dx dy

×
∫∫

Ω
Sj(x, y) f (x, y)dx dy, i, j = 1, . . . ,d.

(7)

(2) Mesh level: the second option is to use a fixed band-
width matrix for all triangles in a given mesh, but differ-
ent bandwidths for different meshes. In this case, the band-
width matrix for a given feature can be obtained from its
observations using Scott’s rule of thumb [14]: HScott =
(
∑

k w
2
k)1/(d+4)Ĉ1/2, where d is the dimension of the feature,

Ĉ is the estimate of the feature covariance matrix, and wk

is the weight associated to each observation. Scott’s rule of
thumb is proven to provide the optimal bandwidth in terms
of estimation error when the kernel function and the un-
known density are both Gaussian. Although, there is no guar-
antee that feature distributions to be Gaussian, Scott’s rule of
thumb is still used for its simplicity.
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(a) (b)

Figure 3: Distribution of target points over the unit-sphere, ob-
tained by subdividing an octahedron once (left: 32 points) and twice
(right: 128 points).

(3) Database level: in the last option, the bandwidth pa-
rameter is fixed for all triangles and meshes, that is, Hk = H .
Setting the bandwidth at database level has the implicit effect
of smoothing the resulting densities. In this case, we estimate
the bandwidth parameters from a representative subset of the
database by averaging the Scott bandwidth matrices over the
selected meshes.

3.5. Choice of the targets

Targets are defined as the points at which the feature density
functions are explicitly calculated. The density values com-
puted at these targets constitute the 3D shape feature vec-
tor. Selection of target points must result in parsimonious
yet discriminative descriptors. For single-dimensional fea-
tures, it suffices to uniformly sample the density function
within its dynamic range. However, the multidimensional
features, Sr , St , and Sc, which consist of magnitude and di-
rection components, require more attention. We denote the
target size by Nmag for the magnitude component and by
Ndir for the direction component. The target points for these
multidimensional features are then obtained by the Cartesian
product of the two sets, yielding an overall target set size of
N = Nmag × Ndir. The magnitude components of Sr and St
are uniformly quantized in the interval [0, rmax], while those
of St in the [0,dt,max] interval. The setting of rmax and dt,max

is discussed in Section 4.2. The direction components of Sr
and St features, namely, r̂P and n̂P , lie on the unit sphere. To
complete the design of target points, following [12], we con-
sider an octahedron circumscribed by the unit sphere and we
subdivide each of its 8 triangles into four, twice, by radially
projecting back the subdivided triangles to the surface of the
sphere. As targets of the direction components of Sr and St,
we select the barycenters of the resulting 128 triangles, 16 per
each of the 8 faces of the octahedron. This leads to a uniform
partitioning of the sphere, as shown in Figure 3.

The Sc feature has a direction component cP with non-
unit norm, which lies within the unit ball. For the target set of
the direction component cP , we thus similarly consider octa-
hedra, but circumscribed by spheres of various radii. We take
four such octahedra within spheres of radial length 0.25, 0.5,
0.75, and 1. We subdivide the two inner octahedra once, each

yielding 32 targets, and the two outer octahedra twice, each
yielding 128 targets. This gives a total of Ndir = 320 regularly
spaced targets for the cP-component of the Sc feature. The
inner spheres have sparser targets to balance out the target
densities of the outer spheres.

3.6. Computational complexity of KDE

The computational complexity of KDE using directly (4) is
O(KN), where K is the number of observations (the num-
ber of triangles in our case) and N is the number of den-
sity evaluation points, that is, targets. For applications such
as content-based retrieval, the O(KN)-complexity is pro-
hibitive. To give an example, on a Pentium 4 PC (2.4 GHz
CPU, 2 GB RAM) and for a mesh of 130, 000 triangles, the
direct evaluation of the Sr-descriptor (1024-point pdf) takes
125 seconds. However, when the kernel function in (4) is
chosen as Gaussian, we can use the fast Gauss transform
(FGT) [15, 16] to reduce the computational complexity by
two orders of magnitude. For example, with FGT, the Sr-
descriptor computation takes only 2.5 seconds. FGT is an ap-
proximation scheme enabling the calculation of large sums of
Gaussians within reasonable accuracy and reducing the com-
plexity down to O(K + N). In our 3D shape description sys-
tem, we have used an improved version of FGT implemented
by Yang et al. [16].

For the sake of completeness, we provide the conceptual
guidelines of the FGT algorithm (see [15, 16] for mathemat-
ical and implementation details). FGT is a special case of
the more general fast multipole method [15], which trades
off computational simplicity for acceptable loss of accuracy.
The basic idea is to cluster the data points and target points
using appropriate data structures and to replace the large
sums with smaller ones that are equivalent up to a given
precision. In the case of FGT, each exponential in the sum
is shifted and expanded into a truncated Hermite series in
O(K) operations. The gain in complexity is achieved by
avoiding the computation of every Gaussian at every eval-
uation point unlike the direct approach, which has O(KN)-
complexity. The accuracy can be controlled by the trunca-
tion order. Truncated Hermite series are constructed about
a small number of cluster centers formed by target points;
the series are shifted to target cluster centers, and then eval-
uated at N targets in O(N) operations. Since the two sets of
operations are disjoint, the total complexity of FGT becomes
O(K + N).

3.7. Flow diagram of the algorithm

We summarize below the proposed algorithm to obtain a
density-based 3D shape descriptor.

(1) For a chosen local feature S, specify a set of targets tn,
n = 1, . . . ,N .

(2) Normalize the 3D triangular mesh M = ⋃K
k=1 Tk ac-

cording to the invariance requirements of S.
(3) For each mesh triangle Tk, calculate its feature value sk

using (6) and its weight wk.
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Figure 4: Flow diagram to compute a density-based 3D shape descriptor when the bandwidth is set at database level.

(4) Set the bandwidth parameters Hk according to the
strategy chosen among the three options described in
Section 3.4.

(5) For each target tn, n = 1, . . . ,N , evaluate the local fea-
ture density fS(tn), using (4).

(6) Store the resulting density values fS(tn) in the shape
descriptor fS = [ fS(t1), . . . , fS(tN )].

Note that the descriptors corresponding to L different lo-
cal features S1, . . . , SL can be concatenated to obtain a com-
bined descriptor fS1,...,SL = [fS1 , . . . , fSL]. Figure 4 depicts the
flow diagram of the algorithm when the bandwidth param-
eters are set at database level. Alternatively, in the triangle
or mesh level setting, a bandwidth matrix is to be computed
for each triangle or for the entire mesh, respectively. Note
that in Figure 4, we assume that the mesh M has already un-
dergone a pose and/or scale normalization step depending
on the missing invariance properties of the local feature S
chosen.

4. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the proposed
shape descriptors in 3D retrieval applications. When a query
model is presented to the 3D object database, its descriptor
is calculated and then compared to all the stored descriptors
using a distance function. The outcome is a set of database
models sorted in increasing distance. The models at the top
of the list are expected to resemble the queried model more
than those at the bottom of the list.

We have experimented on two different 3D model
databases: the Princeton Shape Benchmark (PSB) [5] and the
Sculpteur Database (SCUdb) [6, 27]. Both databases consist
of objects described as triangular meshes, though they differ
substantially in terms of content and mesh quality. PSB is a
publicly available database containing a total of 1814 synthe-
sis models, categorized into general classes such as animals,
humans, plants, household objects, tools, vehicles, buildings,
and so forth. An important feature of the database is the
availability of two equally sized sets. One of them is a training

set (90 classes) reserved for tuning the parameters involved
in the computation of a particular shape descriptor, and the
other for testing purposes (92 classes). By contrast, SCUdb is
a private database containing over 800 models correspond-
ing mostly to scanned archeological objects residing in mu-
seums [6, 27]. Presently, 513 of the models are classified into
53 categories with comparable set populations, which in-
clude utensils of ancient times (e.g., amphorae, vases, bottles,
etc.), pavements, and artistic objects such as human statues
(parts or as a whole), figurines, and moulds. The database
has been augmented by artificially generated 3D objects such
as spheres, tori, cubes, or cones in order to build a set of sim-
ple well-controlled classes. The meshes in SCUdb are highly
detailed and reliable in terms of connectivity and orientation
of triangles. To give an idea of the significant differences be-
tween PSB and SCUdb, we can quote average mesh resolu-
tion figures. The average number of triangles in SCUdb and
in PSB is 175250 and 7460, respectively, corresponding to a
ratio of 23. In terms of vertices, SCUdb meshes contain 87670
vertices on the average while for PSB this number is 4220.
Furthermore, the average triangular area relative to the total
mesh area is 33 times smaller in SCUdb than in PSB.

4.1. Evaluation tools

The most commonly used statistics for measuring the per-
formance of a shape descriptor in a content-based retrieval
application are summarized below [5].

(i) Precision-recall curve

For a query q that is a member of a certain class, Precision
(vertical axis) is the ratio of the relevant matches Kq (matches
that are within the same class as the query) to the number of
retrieved models Kret, and Recall (horizontal axis) is the ratio
of relevant matches Kq to the size of the query class Cq:

Precision = Kq

Kret
, Recall = Kq

Cq
. (8)
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(ii) Nearest neighbor (NN)

The percentage of the first-closest matches that belong to the
query class.

(iii) First-tier and second-tier

First-tier (FT) is the recall when the number of retrieved
models is the same as the size of the query class and second-
tier (ST) is the recall when the number of retrieved models is
two times the size of the query class.

(iv) E-measure

This is a composite measure of the precision and recall for
a fixed number of retrieved models, for example, 32, based
on the intuition that a user of a search engine is more in-
terested in the first page of query results than in later pages.
E-measure is given by

E = 2
1/precision + 1/recall

. (9)

(v) Discounted cumulative gain

A statistic that weights correct results near the front of the list
more than correct results later in the ranked list under the
assumption that a user is less likely to consider elements near
the end of the list. Specifically, the ranked list of retrieved
objects is converted to a list L, where an element Lk has value
1 if the kth object in the ranked list is in the same class as
the query and otherwise has value 0. Discounted cumulative
gain DCGk is then defined as

DCGk =

⎧⎪⎪⎨
⎪⎪⎩
Lk, k = 1,

DCGk−1 +
Lk

log2(k)
, otherwise.

(10)

The final DCG score for a query q is obtained for k = Kmax,
where Kmax is the total number of objects in the database,
and normalizing DCGKmax by the maximum possible DCG
that would be achieved if the first Cq retrieved elements were
in the class of the query q (Cq is the size of the query class).
Thus DCG reads as

DCG = DCGKmax

1 +
∑Cq

k=2

(
1/ log2(k)

) . (11)

(vi) Normalized DCG

This is a very useful statistic based on averaging DCG val-
ues of a set of algorithms on a particular database. Normal-
ized DCG (NDCG) gives the relative performance of an algo-
rithm with respect to the other ones. A negative value means
that the performance of the algorithm is below the average;
similarly a positive value indicates above the average perfor-
mance. Let DCG(A) be the DCG of a certain algorithm A and
let DCG(avg) be the average DCG values of a series of algo-
rithms on the same database, then NDCG for the algorithm

Table 3: Histogram-based 3D shape descriptors and their sizes.

Descriptor Acronym Size N

Cord and angle histograms [11] CAH 4× 64 = 256

D1-distribution [10] D1 64

D2-distribution [10] D2 64

EGI [8] EGI 128

3DHT [12] 3DHT 8× 128 = 1024

A is defined as

NDCG(A) = DCG(A)

DCG(avg) − 1. (12)

All these quantities are normalized within the range [0, 1]
(except NDCG) and higher values reflect better performance.
In order to give the overall performance of a shape descrip-
tor on a database, the values of a statistic for each query are
averaged to yield a single performance figure. The retrieval
statistics presented in the sequel are obtained using the util-
ity software included in PSB [5].

4.2. Retrieval experiments

In all of our retrieval experiments, we use the Minkowski-l1
distance measure to assess the similarity between descriptors
since we have observed that this distance function gives bet-
ter performance in most of the cases as compared to other
distance measures such as l2 or χ2. We apply the following
normalization to all the meshes of the database to secure
RST invariance of the features. For translation invariance,
the object’s center of mass is translated to the origin. For
scale invariance, the area-weighted average distance of sur-
face points to the origin is set to unity. We have observed that,
with this scaling operation, the frequency of the distance of
a surface point to the mesh center exceeding 2 becomes neg-
ligible. This allows us to set empirical upper limits rmax and
dt,maxto the magnitude components rP and dt,P , respectively.
Finally, to guarantee rotation and reflection invariance, we
follow the “continuous” PCA approach of Vranić [7]. All the
codes for our descriptors as well as for those proposed in the
literature (cord and angle histograms [11], D1 and D2 shape
distributions [10], EGI [8] and CEGI [9], 3DHT [12]) have
been implemented in MATLAB 7.0 (R14) environment, us-
ing C MEX external interface for time-consuming jobs. For
FGT, we have used the implementation provided by Yang et
al. [16].

The acronyms of the descriptors we have experimented
are listed in Tables 3 and 4. They will subsequently be used
in graph annotations. The details about descriptor sizes are
given in the corresponding sections.

There are two alternative ways of combining descrip-
tors, by multivariate density evaluation or by concatenat-
ing estimated univariate densities. The multivariate descrip-
tors (Sr, St, Sc, and Sn) that we consider in our experi-
ments are derived from Sr , St, Sc, and Sn features as given
in the first four rows of Table 4. Alternatively, descriptors for
multiple scalar features, for example, Sri, i = 1, . . . , 4, can
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Table 4: Density-based 3D shape descriptors and their sizes.

Descriptor Acronym Size N

Radial (Sr) density Sr 8× 128 = 1024

Tangent pl. (St) density St 8× 128 = 1024

Cross-product (Sc) density Sc 8× 320 = 2560

Normal (Sn) density Sn 128

Univ. dens. of Sr components [Sr1,Sr2,Sr3,Sr4] 4× 64 = 256

Univ. dens. of St components [St1,St2,St3,St4] 4× 64 = 256

Table 5: DCG values for possible bandwidth selection strategies on
PSB training meshes.

Bandwidth setting Sr St Sc

Triangle level 0.352 — —

Mesh level 0.511 0.514 0.499

Database level 0.541 0.567 0.543

separately be computed by univariate density estimation and
then concatenated in a joint vector, as in the last two rows of
Table 4. Let A1,A2, . . . ,AL denote L generic (one- or multidi-
mensional) features and let fA1 , fA2 , . . . , fAL denote the corre-
sponding density-based descriptors withN1,N2, . . . ,NL com-
ponents, respectively, (Ni, i = 1, . . . ,L corresponds to the
number of target points on which the density of feature Ai

has been evaluated or equivalently to the size of the vector
fAi). Square bracketing [A1,A2, . . . ,AL] that appears in sub-
sequent graphs and tables indicates the concatenation of the
shape descriptors [fA1 , fA2 , . . . , fAL] resulting in a vector of size
N1 + N2 + · · · + NL. For notational simplicity, we will refer
to the descriptor fA1 consisting of the density vector as A1-
descriptor; similarly, [A1, A2] will be the shorthand nota-
tion for the descriptor [fA1 , fA2 ]. Note finally that the generic
feature Ai can be either a vector by construction or a scalar
obtained by taking a component of some other multidimen-
sional feature.

4.2.1. Impact of bandwidth selection

The KDE approach critically depends upon the judicious set-
ting of the bandwidth parameters. We tested the triangle,
mesh and database level alternatives presented in Section 3.4
on our multidimensional local features Sr , St, and Sc (the
computationally expensive triangle-level setting was only
tested for Sr). Since we have observed that the off-diagonal
terms of the bandwidth matrices are negligible as compared
to the diagonal terms, we use only diagonal bandwidth ma-
trices H = diag(h1, . . . ,hd). For the mesh level and database
level, we apply the Scott’s rule-of-thumb. For the triangle
level, we employ the KDE toolbox developed by Ihler [28]
since the available FGT implementation does not allow a
different bandwidth per triangle [16]. The KDE toolbox
makes use of kd-trees and reduces the computational bur-
den considerably, though not to the extent achieved by FGT.
Table 5 compares the DCG scores obtained with Sr, St, and
Sc-descriptors on the PSB training set. Figure 5 shows the
precision-recall plots corresponding to mesh and database
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Figure 5: Precision-recall curves with a bandwidth selection made
at mesh level versus database level for Sr-descriptor (a) and St-
descriptor (b) on PSB training set.

level settings for Sr and St-descriptors. We clearly observe
that setting the bandwidth H at database level is more ad-
vantageous as compared to triangle and mesh level settings.
Any further results reported are therefore for the database
level setting of H . In Table 6, we provide the average Scott
bandwidth values obtained from PSB training meshes for Sr ,
St , and Sc features.

4.2.2. Univariate versus multivariate
density-based descriptors

In this section, we compare the impact of combining de-
scriptors on the retrieval performance. As discussed before,
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Table 6: The average Scott bandwidth obtained from the PSB train-
ing meshes.

Descriptor h1 h2 h3 h4

Sr 0.20 0.35 0.25 0.15

St 0.20 0.25 0.25 0.30

Sc 0.20 0.15 0.25 0.25

descriptors can be compounded either by concatenating uni-
variate descriptors or by multivariate density estimation.
One can conjecture that the multivariate descriptors, result-
ing from the joint density functions of features, are richer in
information content since component-wise dependencies are
also taken into account. On the other hand, univariate den-
sities are much simpler to estimate and do not incur into di-
mensionality problems. In our experiments, each univariate
density is evaluated at 64 target points. Accordingly, a 4-tuple
concatenation, such as [Sr1,Sr2,Sr3,Sr4], results in a descrip-
tor of sizeN = 4×64 = 256. For multivariate density descrip-
tors Sr and St, recall that Ndir = 128 and for Sc, Ndir = 320
(see Section 3.5). Nmag being chosen equal to 8 in all cases,
the size of the Sr and St-descriptors is N = 8 × 128 = 1024
and the size of the Sc-descriptor is N = 8× 320 = 2560. Fig-
ures 6 and 7 with Table 7 explicitly show that the multivari-
ate density-based descriptors are superior to the descriptors
obtained by the concatenation of univariate densities for all
feature types on both databases.

4.2.3. Comparison of density-based descriptors with their
histogram-based peers

One of the motivations of this work is to show that a con-
siderable improvement in the retrieval performance can be
obtained by more rigorous and accurate computation of
shape distributions as compared to more practical ad hoc
histogram approaches. Notice that we interpret the term
“histogram-based descriptor” for any count-and-accumulate
type of procedure. This way we can refer to analogous de-
scriptors in the literature as histogram-based whenever they
count-and-accumulate local information to obtain a global
shape descriptor [8–12].

An interesting case in point is Cord and Angle His-
tograms (CAH) [11]. The features in CAH are identical
to the individual scalar components rP , r̂P,x, r̂P,y , and r̂P,z

of our Sr feature up to a parameterization. In [11], the
authors consider the length of a cord (corresponding to
rP) and the two angles between a cord and the first two
principal directions (corresponding to r̂P,x and r̂P,y). Notice
that in our parameterization of Sr , we consider the Carte-
sian coordinates rather than the angles. In order to com-
pare with our [Sr1,Sr2,Sr3,Sr4]-descriptor, we implemented
the CAH-descriptor by also considering the histogram of
the angle with the third principal direction. The result-
ing CAH-descriptor is thus the concatenation of one cord
length and three angle histograms. Each histogram consist-
ing of 64 bins leads to a descriptor of total size N = 4 ×
64 = 256. [Sr1,Sr2,Sr3,Sr4]-descriptor, again of size 256,
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Figure 6: Precision-recall curves for [Sr1,Sr2,Sr3,Sr4] versus Sr (a)
and [St1,St2,St3,St4] versus St (b) on PSB.

differs from CAH in three aspects: first, it uses a different
parameterization of the angle (direction) components; sec-
ond, the local feature values are calculated by (6) instead
of using mere barycentric sampling; third, it employs KDE
instead of histogram computation. In Figure 8, we pro-
vide the precision-recall curve corresponding to CAH and
[Sr1,Sr2,Sr3,Sr4] on PSB test set and on SCUdb. The re-
spective DCG values are 0.434 and 0.501 for PSB, 0.681
and 0.698 for SCUdb, indicating the superior performance
of our framework under identical feature sets. An addi-
tional improvement can be gained by estimating the joint
density of Sr , leading to the Sr-descriptor. That is, in con-
trast to the concatenation of univariate densities, we directly
use the joint density of Sr as a descriptor. The DCG value
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Figure 7: Precision-recall curves for [Sr1,Sr2,Sr3,Sr4] versus Sr (a)
and [St1,St2,St3,St4] versus St on SCUdb (b).

of the Sr-descriptor is 0.533 on PSB and 0.708 on SCUdb,
one more step of improvement as compared to the con-
catenated univariate case [Sr1,Sr2,Sr3,Sr4] (DCG = 0.501
on PSB and DCG = 0.698 on SCUdb). Note that the per-
formance improvement using our scheme is less impressive
over SCUdb than over PSB. This can be explained by the
fact that SCUdb meshes are much denser than PSB meshes
in number of triangles. As the number of observations in-
creases, the accuracies of the histogram method and KDE
become comparable and both methods result in similar de-
scriptors. This also indicates that the KDE methodology
is especially appropriate for coarser mesh resolutions as in
PSB.

A second instance of our framework outperforming
its competitor is with the EGI-descriptor [2, 5, 8], which

Table 7: Retrieval statistics for univariate and multivariate density-
based descriptors.

Descriptor NN FT ST E DCG

PSB

[Sr1,Sr2,Sr3,Sr4] 0.436 0.222 0.306 0.180 0.501

Sr 0.499 0.260 0.343 0.201 0.533

[St1,St2,St3,St4] 0.451 0.250 0.348 0.202 0.533

St 0.523 0.267 0.364 0.210 0.543

SCUdb

[Sr1,Sr2,Sr3,Sr4] 0.701 0.430 0.555 0.314 0.698

Sr 0.745 0.452 0.568 0.323 0.709

[St1,St2,St3,St4] 0.632 0.400 0.520 0.298 0.662

St 0.754 0.473 0.575 0.324 0.712

consists of binning the surface normals. The density of our
Sn(P) = n̂P feature is equivalent to the EGI-descriptor. There
can be different choices for binning surface normals, for ex-
ample, by mapping the normal of a certain mesh triangle to
the closest bin over the unit sphere and augmenting that bin
by the relative area of the triangle. Such an approach requires
a very densely discretized unit sphere and the resulting de-
scriptor is not very efficient in terms of storage. In the present
work, similarly to [12], we preferred the following imple-
mentation for the EGI-descriptor. First, 128 unit norm vec-
tors n̂bin, j , j = 1, . . . , 128, are obtained as histogram bin cen-
ters by octahedron subdivision, as described in Section 3.5.
Then, the contribution of each triangle Tk, k = 1, . . . ,K ,
with normal vector n̂k to the nth bin center is computed as
wk|〈n̂k, n̂bin, j〉| if |〈n̂k, n̂bin, j〉| ≥ 0.7 or otherwise as zero (re-
call that wk is the relative area of the kth triangle). The use of
the absolute value is needed because some models as those in
the PSB set cannot provide orientation information. The Sn-
descriptor of the same size, that is, 128, achieves a superior
DCG of 0.478 as compared to the DCG score of 0.438 for EGI
on PSB (see Figure 9). For SCUdb, the DCG-performance
differential is even more pronounced (DCG = 0.589 for
Sn, DCG = 0.535 for EGI) noting that for low recall val-
ues (recall < 0.2), the EGI-descriptor is better than Sn (see
Figure 9).

A third instance of comparison can be considered be-
tween our St-descriptor and the 3DHT-descriptor [12] since
both of them use local tangent plane parameterization. The
procedure for the 3DHT descriptor is carried out as follows.
We first recall that the 3DHT-descriptor is a histogram con-
structed by accumulating mesh surface points over planes in
3D space. Each histogram bin corresponds to a plane Pi j pa-
rameterized by its normal distance dt,i, i = 1, . . . ,Nmag, to
the origin and its normal direction n̂bin, j , j = 1, . . . ,Ndir.
Clearly, there can be Nmag × Ndir such planes and the result-
ing descriptor is of size N = Nmag × Ndir. We can obtain
such a family of planes exactly as described in Section 3.5
and in [12]. In our experiments, we have used Nmag = 8
distance bins sampled within the range [0, 2] and Ndir =
128 uniformly sampled normal directions. This results in a
3DHT descriptor of size N = 1024. To construct the Hough
array, one first takes a plane with normal direction n̂bin, j ,
j = 1, . . . ,Ndir, at each triangle barycenter mk, k = 1, . . . ,K ,
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Figure 8: Precision-recall curves for CAH, [Sr1,Sr2,Sr3,Sr4] (con-
catenated) and Sr (joint) on PSB test set (a) and SCUdb (b).

and then calculates the normal distance of the plane to the
origin by |〈mk, n̂bin, j〉|. The resulting value is quantized to
the closest dt,i, i = 1, . . . ,Nmag, and then the bin corre-
sponding to the plane Pi j is augmented by wk|〈n̂k, n̂bin, j〉|
if |〈n̂k, n̂bin, j〉| ≥ 0.7 (the value of 0.7 is suggested by Zaharia
and Prêteux [12] and we have also verified its performance-
wise optimality). In Figure 10, we compare the St- and the
3DHT-descriptors in terms of precision-recall curves. On
PSB, the St-descriptor yields a DCG of 0.543, a worse score
against 0.577 of the 3DHT-descriptor. This can be attributed
largely to the fact that the 3DHT-descriptor employs an im-
plicit correction for normal orientations by the weighting
scheme wk|〈n̂k, n̂bin, j〉| according to which only normal di-
rection n̂k matters but not its orientation. Our St-descriptor
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Figure 9: Precision-recall curves for EGI and Sn on PSB test set (a)
and SCUdb (b).

does not make use of such a correction and considers the
normal orientations as they are provided by the list of tri-
angles in the mesh. Accordingly, we explain the negative
performance gap between St and 3DHT by the fact that,
on PSB meshes, information regarding normal orientations
might be compromised. On the other hand, for SCUdb,
the performance of St (DCG = 0.712) parallels that of
3DHT noting that 3DHT remains slightly better (DCG =
0.727).

4.2.4. General performance comparison

In this section, we compare the descriptors that we pro-
pose (univariate, concatenated, or multivariate) first among
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Figure 10: Precision-recall curves for 3DHT and St on PSB test set
(a) and SCUdb (b).

themselves and then with various other descriptors existing
in the literature.

In Table 8, we see the competition within the Sr, St, and
Sc set and their various combinations. Since pairing the fea-
tures results in higher dimensions (8 or 12) precluding mul-
tivariate density estimation, we use concatenation of the 4-
variate densities. It is interesting to observe that the pair-
wise concatenations [Sr,St], [Sr,Sc], and [St,Sc] of size 2048,
3584 and 3584, respectively, increase the DCG and NN scores
significantly. We can conclude that each local feature must
be reporting aspects on the shape not covered by the re-
maining ones, albeit their similarity. Furthermore, the triplet
concatenation [Sr,St,Sc] of size 4608 boosts the DCG and
NN performance further. We also note that, on a Pentium
4 PC (2.4 GHz CPU, 2 GB RAM), the [Sr,St,Sc]-descriptor
can be computed in less than one second on the average over

PSB test set meshes, which indicates that our density-based
descriptors are very time-efficient and suitable for practical
online applications.

Table 9 finally summarizes the experimental results con-
ducted to compare our density-based descriptors with other
histogram-based descriptors. For both databases, PSB and
SCUdb, the [Sr,St,Sc]-descriptor comes at the top in all per-
formance fields. Furthermore, the second place is taken by a
pairwise concatenation which is more storage-efficient and
even more time-efficient than [Sr,St,Sc]: [Sr,St] for PSB and
[St,Sc] for SCU.

The density-based framework does not only outperform
histogram-based descriptors but also proves to be effective
as compared to other more general state-of-the-art shape
descriptors. In fact, based on the scores on PSB test set re-
ported in [5], the [Sr,St,Sc]-descriptor has the highest DCG
score among all other well-known 3D shape descriptors, as
shown in Figure 11. Except for 3DHT [12] and CAH [11],
all the descriptor scores shown in Figure 11 are taken from
[5]. We refer the reader to [5] for brief descriptions and
acronyms of these descriptors. The [Sr,St,Sc]-descriptor has
a DCG value of 0.607, while the next best descriptor radial-
ized extent function (REXT) [7, 24] has a DCG value of 0.601
[5]. Note also that the [Sr,St]-descriptor (DCG = 0.599)
ranks third in the competition. The average REXT-descriptor
size reported in [5] is 17.5 kilobytes, while for our [Sr,St,Sc]-
descriptor this figure is 22 kilobytes. The average generation
time for the REXT-descriptor is 2.2 seconds [5], while our
[Sr,St,Sc]-descriptor can be computed in 0.9 seconds on the
average on comparable hardware configurations.

5. CONCLUSION

We have proposed a novel methodology to obtain 3D shape
descriptors and evaluated its impact in a retrieval scenario.
We have shown that shape descriptors derived as kernel den-
sity estimates of local surface features prove more advan-
tageous compared to the count-and-accumulate-based his-
togram descriptors. Firstly, one main advantage accrues from
the fact that our descriptors are true probability density func-
tions of geometrical quantities defined over the model sur-
face. Secondly, our surface sampling is not as crude as just
considering triangle barycenters or as profuse as random
sampling, but judiciously chooses the triangle characteris-
tics. Thirdly and most importantly, the KDE-based approach
deals with multidimensional surface features as easily as with
scalar features. The bandwidth parameters in KDE provide
a more gracious control over finite sample-size and dimen-
sionality problems, while with multivariate histograms one
can only adjust the bin widths [13, 14]. The local surface in-
formation brought by multidimensional features proves to
be more discriminating than scalar ones.

The proposed framework applies to 3D objects repre-
sented as triangular meshes but extension to point-cloud
representations is straightforward. Concerning hidden trian-
gles encountered in triangular “soups,” we remark that we
do not try to detect such degeneracies and process them
as any other triangles. They introduce noise in the density
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Table 8: DCG and NN scores for the combination of density-based descriptors.

Sr St Sc [Sr,St] [Sr,Sc] [St,Sc] [Sr,St,Sc]

PSB
DCG 0.533 0.543 0.533 0.599 0.579 0.585 0.607

NN 0.500 0.527 0.487 0.606 0.572 0.584 0.615

SCUdb
DCG 0.708 0.712 0.732 0.731 0.742 0.744 0.746

NN 0.745 0.754 0.733 0.788 0.776 0.774 0.786

Table 9: General performances of histogram and density-based descriptors.

Descriptor NN FT ST E DCG NDCG

PSB

[Sr,St,Sc] 0.615 0.339 0.434 0.251 0.607 0.214

[Sr,St] 0.606 0.333 0.423 0.245 0.599 0.199

3DHT 0.588 0.311 0.396 0.230 0.577 0.154

D2 0.363 0.168 0.245 0.145 0.448 −0.103

EGI 0.311 0.165 0.245 0.145 0.438 −0.124

CAH 0.332 0.159 0.229 0.137 0.433 −0.133

D1 0.256 0.119 0.185 0.107 0.397 −0.207

SCUdb

[Sr,St,Sc] 0.786 0.518 0.617 0.355 0.746 0.106

[St,Sc] 0.774 0.513 0.622 0.355 0.744 0.103

3DHT 0.778 0.485 0.603 0.336 0.727 0.079

CAH 0.678 0.427 0.536 0.309 0.681 0.010

D1 0.643 0.366 0.486 0.272 0.646 −0.042

D2 0.643 0.355 0.467 0.264 0.643 −0.048

EGI 0.489 0.252 0.349 0.203 0.535 −0.207

estimation but not to the extent to alter the density-based
descriptor drastically. Furthermore, hidden triangles present
in PSB remain in small proportion and SCUdb models are
manifold and free of hidden triangles.

Our framework should be viewed as an application of
kernel density estimation [13, 14] with either variable (tri-
angle or mesh levels) or fixed (database level) bandwidth
parameters selection [25]. We have also demonstrated that
density-based descriptors are much more discriminative in
retrieval when the bandwidth parameters are set at database
level as compared to mesh or triangle level setting. We
think that the database level strategy smoothes out individ-
ual shape details and emphasizes global shape properties as
appropriate for object retrieval and classification tasks; while
the other two options, especially the triangle level strategy,
result in an overfitting of the feature density and hamper the
descriptor’s discrimination ability. Furthermore, the compu-
tational advantage of density-based descriptors enabled by
FGT with a database-dependent bandwidth matrix is very
promising for practical online applications.

When combined together, the multivariate density-based
3D shape descriptors introduced in this work outperform
the existing histogram-based techniques in the literature.
The retrieval competition took place on two databases, PSB
and SCUdb, which are fundamentally different in semantic
content and mesh quality. In addition, the performance ad-
vantage of density-based descriptors over its competitors is
not limited to histogram-based ones, as shown in the more

general comparison where our [Sr,St,Sc]-descriptor reaches
the top position in the category of purely 3D descriptors
reported in [5]. As a side remark, based on nearest-neighbor
scores of our descriptors, we conjecture that they would also
perform well in recognition applications.

In summary, a general framework using KDE has been
developed, that covers existing and novel descriptors. Our
method enables the use of arbitrary one- or multidimen-
sional surface features for retrieval, recognition, and classifi-
cation of 3D objects. Future research will concentrate on po-
tential improvements of decision fusion. For example, several
retrievers can operate in parallel and one can consider rank-
weighted reordering of the retrieved objects. A second natu-
ral avenue of research is in the direction of second-order fea-
tures. We will tackle the problem of designing second-order
features that would serve as natural proxies for curvature-like
quantities. Curvature is in fact difficult to work with because
of the estimation inaccuracies involved in its computation.
Nevertheless, it can be conjectured that the kernel-based ap-
proach, thanks to its smoothing behavior, may be useful in
deriving curvature-driven 3D shape descriptors. One of our
future objectives is thus to arrive at an exhaustive set of first-
and second-order features and to discover computational
limits of the density-based approach. A side issue is to ren-
der the proposed descriptors more effective in discrimination
and more efficient in terms of storage size by adequately sam-
pling the local feature domains for target evaluation points. A
further question that should be considered is to which extent
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Figure 11: Comparison of 3D shape descriptors on PSB test set. (Except CAH, 3DHT, and our descriptors, DCG values are taken from [5].)

the combination of the available features can be exploited,
that is, how large the feature dimension of the multivariate
densities can be.
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sity, Istanbul, in 2002 and 2004, respec-
tively. He has been pursuing his Ph.D.
degree jointly at Boğaziçi University and
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