3D Object Retrieval From Shape Description to Similarity Learning

Ceyhun Burak Akgül, PhD Vistek ISRA Vision

www.vistek-isravision.com www.cba-research.com

March 2010

Context

Ceyhun Burak Akgül PhD Thesis [November 2007] Density-Based Shape Descriptors and Similarity Learning for 3D Object Retrieval Available at www.cba-research.com

Prof. Bülent Sankur (Advisor) Boğaziçi University EE Dept. Dept., Istanbul, Turkey

Prof. Francis Schmitt (Advisor)

Télécom ParisTech (ENST) Signal & Image Proc. Dept., Paris, France.

Assoc. Prof. Yücel Yemez (Co-Advisor) Koç University Computer Engineering Dept., Istanbul, Turkey

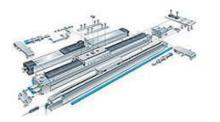
3DOR: Applications

Video Games

Medicine

3D data and objects are everywhere!

Engineering



Car Industry

Cultural Heritage

3

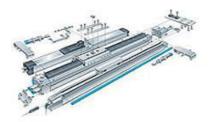
3DOR: Applications

Video Games

Medicine

How to organize a 3D database? How to look for an item in a 3D database?

Engineering



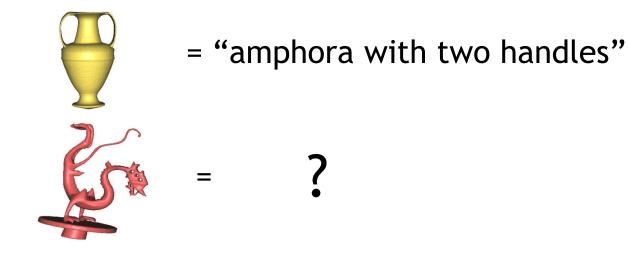
Car Industry

Cultural Heritage

4

3DOR: Why?

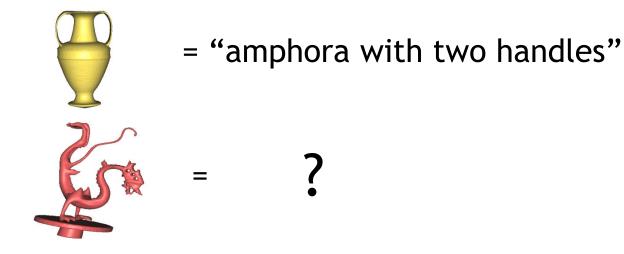
Text-based search and manual annotation have limitations:



How many items can one annotate unambiguously?

3DOR: Why?

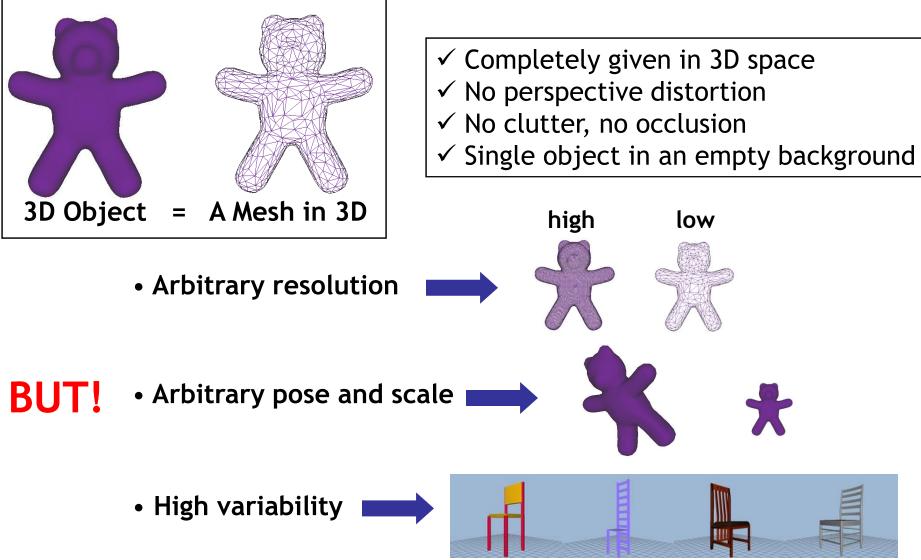
Text-based search and manual annotation have limitations:



How many items can one annotate unambiguously?

Search and retrieve by content similarity

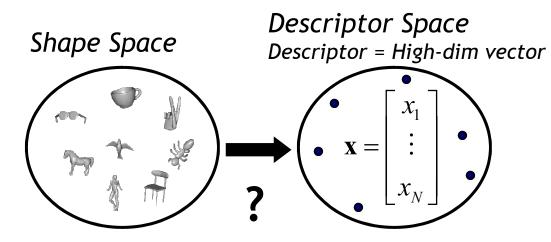
3DOR: What is a 3D object?



Add to these small shape variations which don't alter semantics⁷

3DOR: Main Research Problems

1 Content Description for 3D Shapes



- Intrinsic shape characteristics
- Robustness
- Fast computation
- Low storage cost
- Geometric invariance
- High discrimination ability

2 Similarity Learning for CBR

- Similarity models for retrieval
- Statistical learning
 - Optimization criteria
- Limited supervision
 - Small training set
- Search paradigms
 - Relevance feedback ⁸

Shape Description

3D Shape Descriptors

Histogram-Based

- Cord and Angle Hist (CAH)
- Shape Distributions (SD)
- Generalized Shape Distr. (GSD)
- Shape Histograms (SECSHELL)
- Extended Gaussian Images (EGI)
- Shape Spectrum Desc. (SSD)
- 3D Hough Transform (3DHT)

Transform-Based

- VOXEL-3DFT
- Radial Cosine Transform
- Angular Radial (ART)
- Spherical Harmonics (SH) o Rotation Inv. SH (RiSH) o REXT SH
- Spherical Wavelet (SW)
- Concrete Radialized Spherical Projection (CRSP)

2D "Image"-Based

- Light Field Images (LFD)
- Depth Buffer Images (DBI)
- Silhouette (SIL)

Others

- Graph-Based o Reeb Graphs
- Moments-Based
 o Zernike Moments
- Spin Images
- Symmetry Descriptors

3D Shape Descriptors

Histogram-Based

- Cord and Angle Hist (CAH)
- Shape Distributions (SD)
- Generalized Shape Distr. (GSD)
- Shape Histograms (SECSHELL)
- Extended Gaussian Images (EGI)
- Shape Spectrum Desc. (SSD)
- 3D Hough Transform (3DHT)

Transform-Based

- VOXEL-3DFT
- Radial Cosine Transform
- Angular Radial (ART)
- Spherical Harmonics (SH) o Rotation Inv. SH (RiSH) o REXT SH
- Spherical Wavelet (SW)
- Concrete Radialized Spherical Projection (CRSP)

2D "Image"-Based

- Light Field Images (LFD)
- Depth Buffer Images (DBI)
- Silhouette (SIL)

Others

- Graph-Based o Reeb Graphs
- Moments-Based
 o Zernike Moments
- Spin Images
- Symmetry Descriptors

Density-Based Framework (DBF)

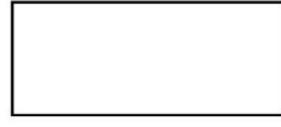
- o Unifying framework
- o A multivariate extension
- **o Kernel Density Estimation (KDE) = Parzen windows**
 - smoother than histogram
 - less sensitive to feature measurement errors than histogram

DBF: Overview Sample Compute Normalize 3D points features 2 • 3D coordinates $\{\mathbf{S}_k\}$ • Tangent plane Estimate pdf by Curvature related Kernel Density Estimation 4 Multivariate $f(\mathbf{t}_n) = C \sum_{k} exp\left(-\frac{1}{2} \left\|\mathbf{H}^{-1}(\mathbf{t}_n - \mathbf{s}_k)\right\|^2\right)$ local characterization H:Smoothing parameter $\mathbf{f} = \begin{bmatrix} f(\mathbf{t}_1) & \cdots & f(\mathbf{t}_n) & \cdots & f(\mathbf{t}_N) \end{bmatrix}$ Global 3D shape descriptor

DBF: Robustness

\checkmark Insensitive to small shape variations & errors

Feature Space



DBF: Robustness

\checkmark Insensitive to small shape variations & errors

1. Place a grid on the feature space:	
	(+)

Feature Space

٠

.

٠

٠

.

•

٠

٠

٠

٠

.

.

٠

.

٠

.

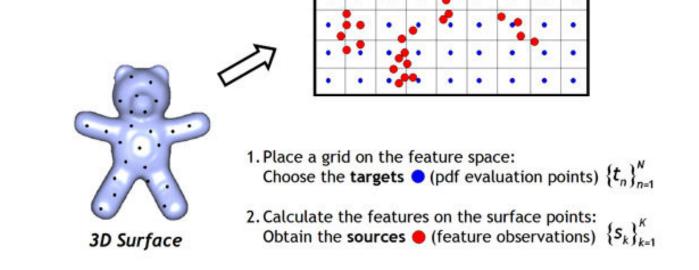
٠

Choose the targets \bigcirc (pdf evaluation points) $\{t_n\}_{n=1}^N$

3D Surface

DBF: Robustness

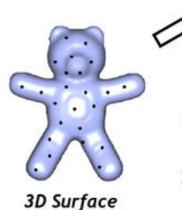
\checkmark Insensitive to small shape variations & errors



Feature Space

DBF: Robustness

\checkmark Insensitive to small shape variations & errors



Feature Space

- 1. Place a grid on the feature space: Choose the **targets** \bigcirc (pdf evaluation points) $\{t_n\}_{n=1}^N$
- 2. Calculate the features on the surface points: Obtain the sources \bullet (feature observations) $\{s_k\}_{k=1}^{\kappa}$

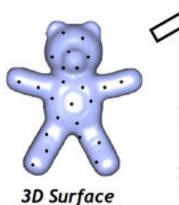
ERRORS

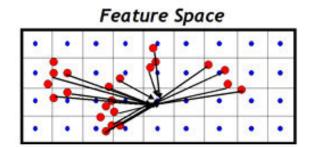
- Scaling
- Rotation
- Translation
- Noise
- Small shape variation
- Mesh degeneracy
- ...

We can use the histogram as the pdf estimate, but...

DBF: Robustness

\checkmark Insensitive to small shape variations & errors

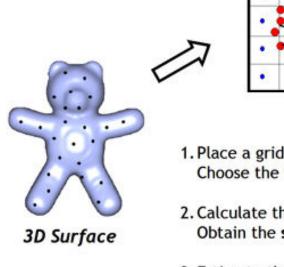


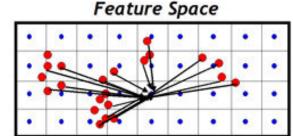


- 1. Place a grid on the feature space: Choose the **targets** \bigcirc (pdf evaluation points) $\{t_n\}_{n=1}^N$
- 2. Calculate the features on the surface points: Obtain the sources \bullet (feature observations) $\{s_k\}_{k=1}^{\kappa}$
- 3. Estimate the pdf by Kernel Density Estimation (KDE):
 - Copes with measurement uncertainties
 - Soft assignment strategy
 - Insensitive to the placement of the grid
 - Smoother than the histogram

DBF: Robustness

\checkmark Insensitive to small shape variations & errors





- 1. Place a grid on the feature space: Choose the **targets** \bigcirc (pdf evaluation points) $\{t_n\}_{n=1}^N$
- 2. Calculate the features on the surface points: Obtain the sources \bullet (feature observations) $\{s_k\}_{k=1}^{k}$
- 3. Estimate the pdf by Kernel Density Estimation (KDE):

$$f(t_n) = \sum_{k=1}^{K} W_k \left| H \right|^{-1} \mathcal{K} \left(H^{-1}(t_n - s_k) \right)$$

Density-Based Descriptor $[f(t_1), f(t_2), \dots, f(t_N)]$

DBF: Descriptor Computation

✓ Fast computation: less than 1 sec per 3D object on average

$$f(t_n) = \sum_{k=1}^{K} w_k |H|^{-1} \mathcal{K} (H^{-1}(t_n - s_k))$$

- Direct Evaluation $\rightarrow O(KN)$
- When the kernel K is Gaussian → O(K + N)
 Fast Gauss Transform (FGT)
 [Greengard and Strain, 1991; Yang et al., 2003]
- **Example:** K = 130000 and N = 1024
 - **Direct** \rightarrow 125 secs
 - FGT \rightarrow 2.5 secs

DBF: Geometric Invariance

Correspondence-free shape alignment

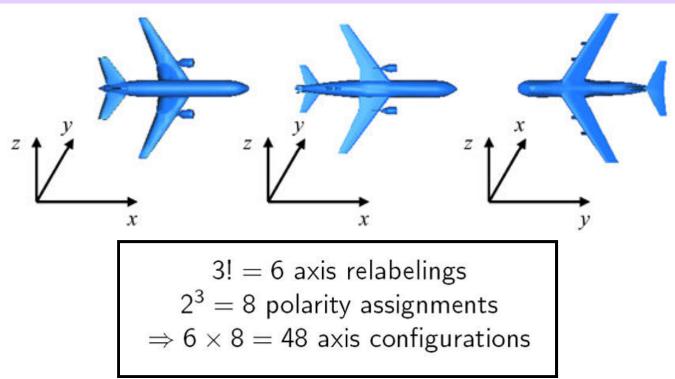
- 1. Invariance by feature design: might loose shape information
- 2. Invariance by pre-normalization: not always stable

3. Invariance at matching

- → Evaluate the similarity under all possible transformations and take the minimum
- × Costly if descriptor should be computed for every possible transformation

DBF: Geometric Invariance

Correspondence-free shape alignment



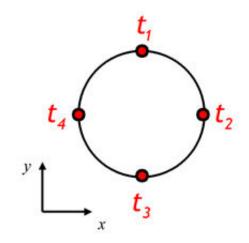
The complexity of invariant matching is 48 times the complexity of vector-to-vector distance computation.

DBF: Geometric Invariance

Correspondence-free shape alignment

In DBF, for certain class of transformations, there is no need to recompute the descriptor:

 \rightarrow Just permute the vector entries!

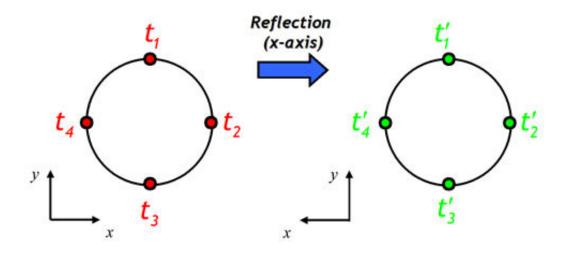


DBF: Geometric Invariance

Correspondence-free shape alignment

In DBF, for certain class of transformations, there is no need to recompute the descriptor:

 \rightarrow Just permute the vector entries!

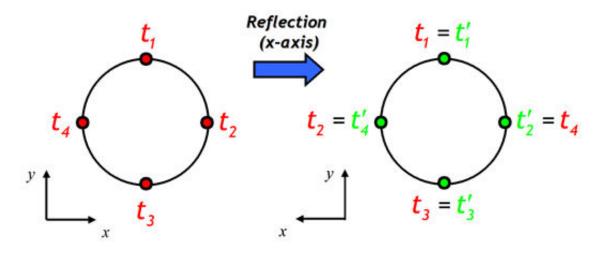


DBF: Geometric Invariance

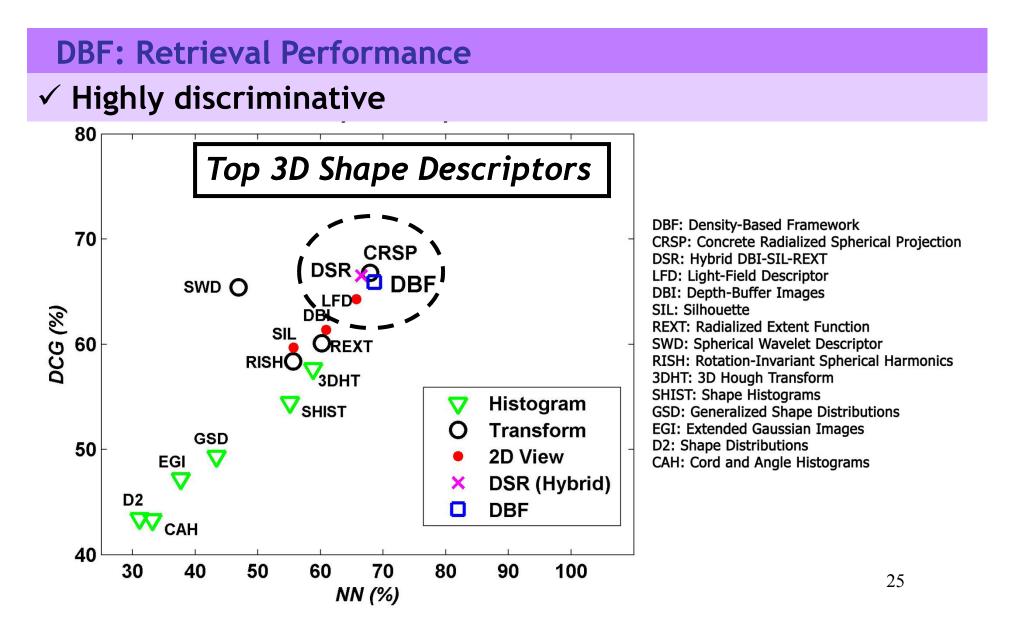
Correspondence-free shape alignment

In DBF, for certain class of transformations, there is no need to recompute the descriptor:

 \rightarrow Just permute the vector entries!

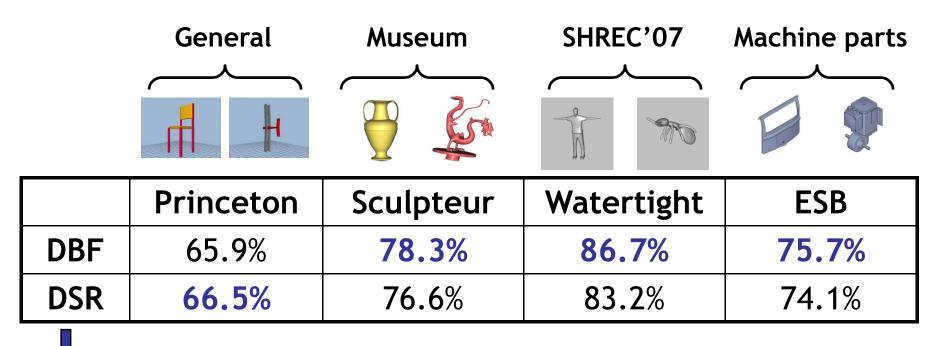


The target set should be <u>closed</u> under the action of the transformation



DBF: Retrieval Performance

✓ Highly discriminative

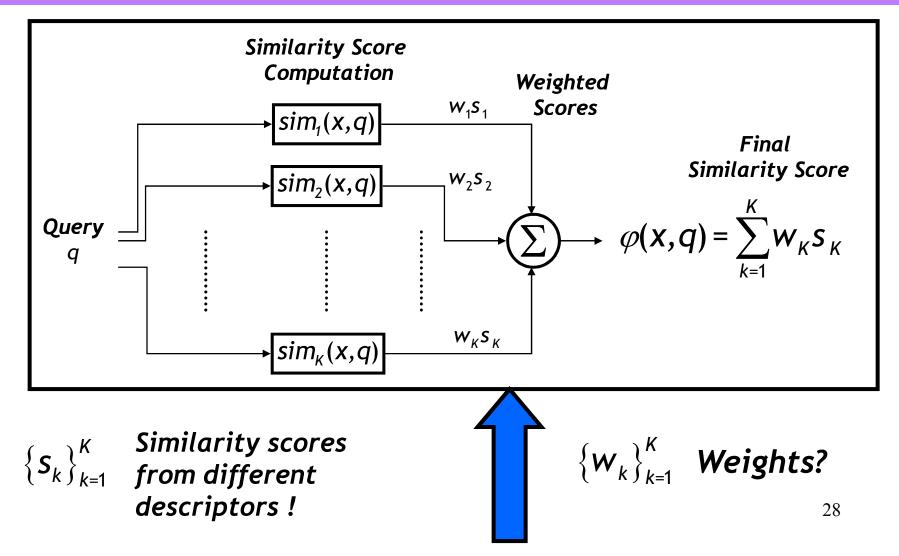


DSR: Hybrid descriptor proposed in D. Vranic's PhD Thesis, 2004.

NOTE: Displayed are % **DCG** values, one of the most popular retrieval statistics.

Similarity Learning

Score Fusion: Overview



Score Fusion: Contributions

- Linear similarity model: intuitively appealing
- Original: Ranking Risk Minimization
 no prior work in visual retrieval domain
- ✓ **Flexible:** can be applied to broader CBR domains
- ✓ Fast computation and convergence
- ✓ ~10% performance increase using **relevance feedback**

Score Fusion: Approach

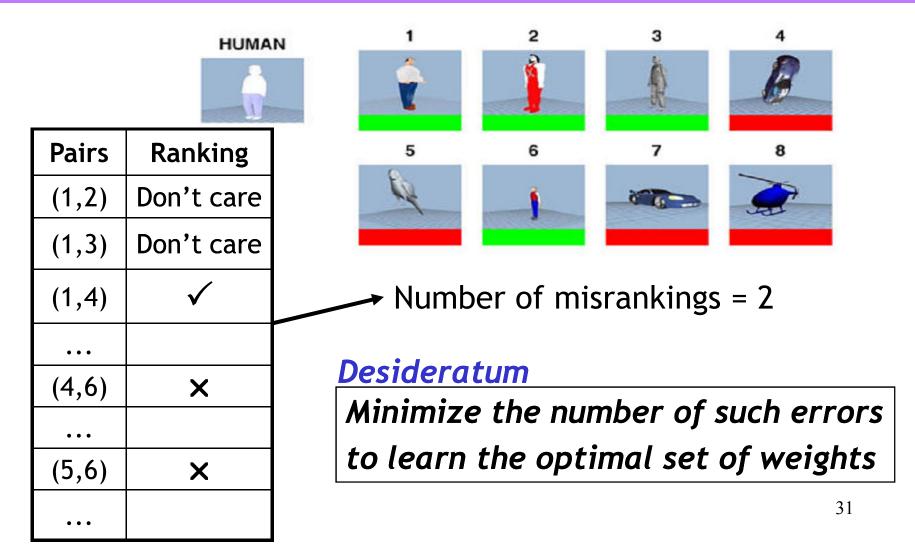
Estimation of the optimal set of weights

1. What kind of criterion to optimize?

Empirical Ranking Risk (ERR)

- Given a query, *relevant* entities should be ranked <u>higher</u> than *less relevant* and/or *not-relevant* ones
- ERR is the count of misordered pairs of entities
- 2. How to incorporate supervision?
 - Ontology-driven search
 - Relevance feedback

Score Fusion: Empirical Ranking Risk



Score Fusion: Ranking Risk Minimization

Similarity function $\varphi(\mathbf{x}, q) = \sum_{k} w_{k} s_{k} = \langle \mathbf{w}, \mathbf{s} \rangle$ should satisfy :

 $\varphi(x,q) > \varphi(x',q)$ if x is more relevant to q than x', $\varphi(x,q) < \varphi(x',q)$ otherwise.

Let y encode the relevance of x to q:

$$y = \begin{cases} +1 & \text{if } x \text{ is relevant to } q, \\ -1 & \text{if not.} \end{cases}$$

Then, we can write :

Score Fusion: Ranking Risk Minimization

Let $z \triangleq sign(y - y')$ and $\mathbf{v} \triangleq \mathbf{s} - \mathbf{s}'$, then:

$$(\mathbf{w},\mathbf{s}-\mathbf{s}') > 0 \quad \text{if } y - y' > 0, \\ \langle \mathbf{w},\mathbf{s}-\mathbf{s}' \rangle < 0 \quad \text{if } y - y' < 0. \end{cases} \qquad (\mathbf{w},\mathbf{v}) > 0 \quad \text{if } z = +1, \\ \langle \mathbf{w},\mathbf{v} \rangle < 0 \quad \text{if } z = -1.$$

Binary classification

- The original problem is transformed into one of binary classification
- \rightarrow Any binary classifier can be used.
- Use Support Vector Machines (SVM)

Score Fusion: Retrieval Protocols

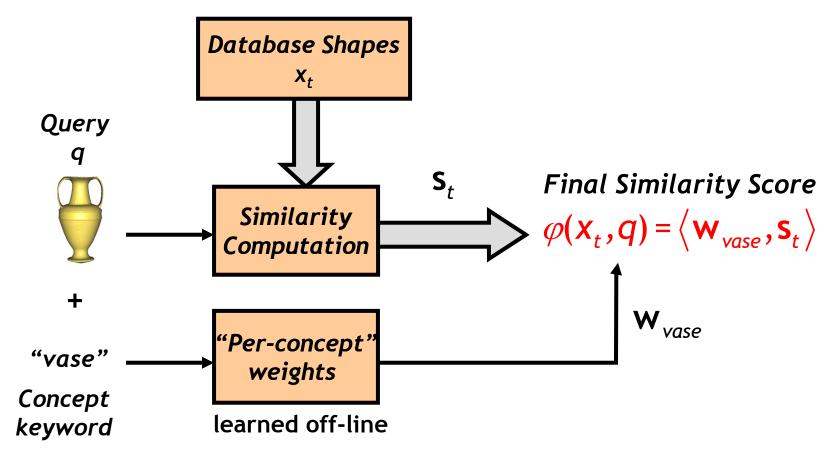
1. Bimodal

- Query: shape + concept keyword
- ✤ Offline learning of concept-specific weights
- ✤ Concepts ↔ Ontologies

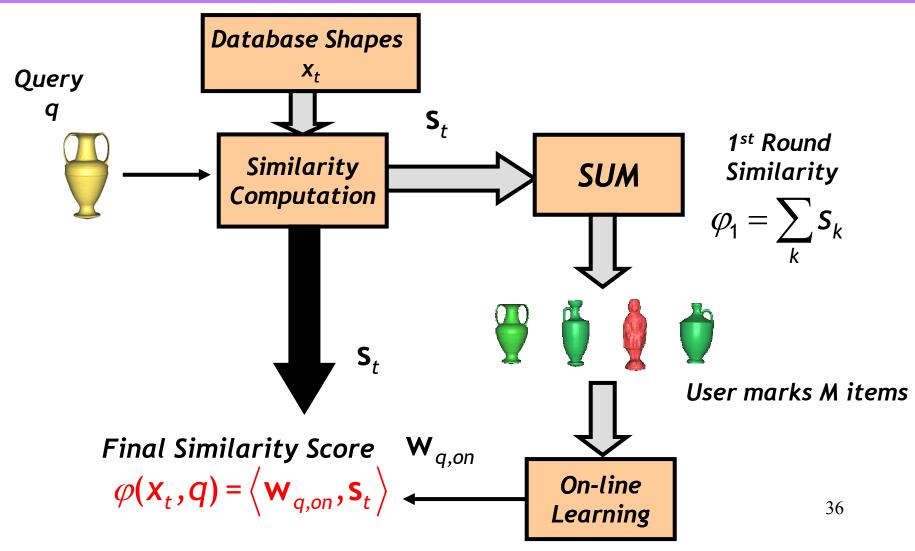
2. Two-Round

- User is active: Relevance feedback
- Online or offline learning of query-specific weights

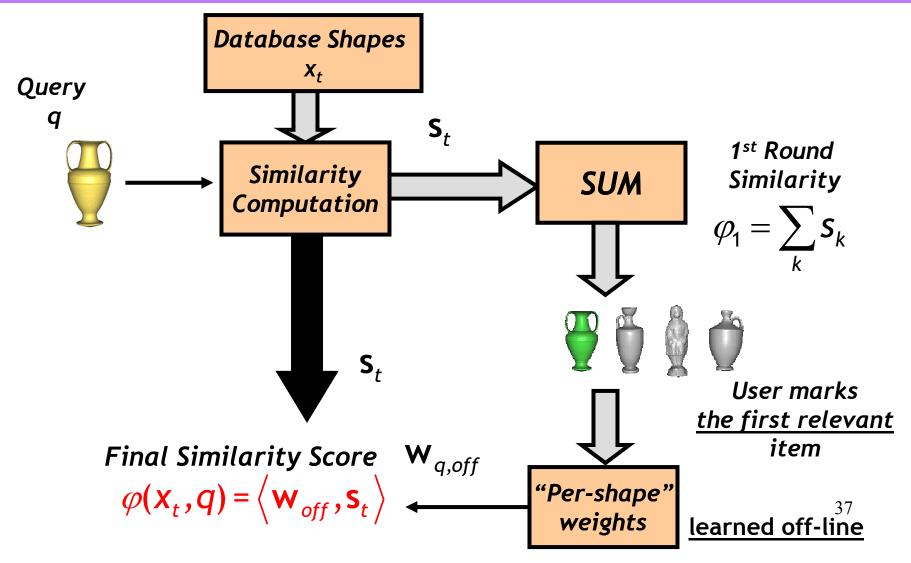
Retrieval Protocols: Bimodal



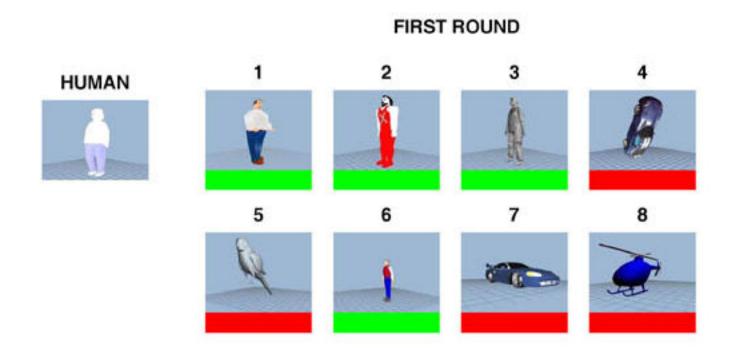
Retrieval Protocols: Two-Round On-line



Retrieval Protocols: Two-Round Off-line

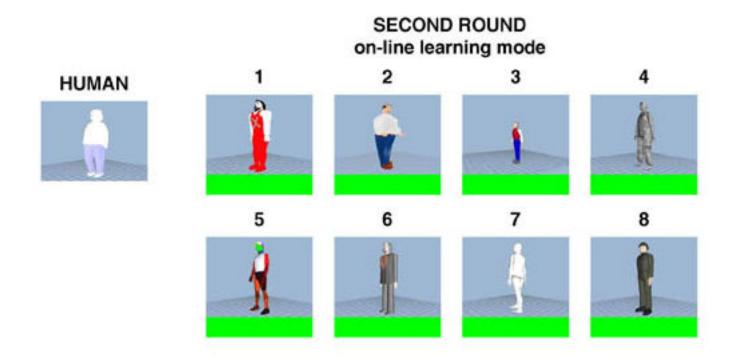


Two-Round On-line Example: "Human"



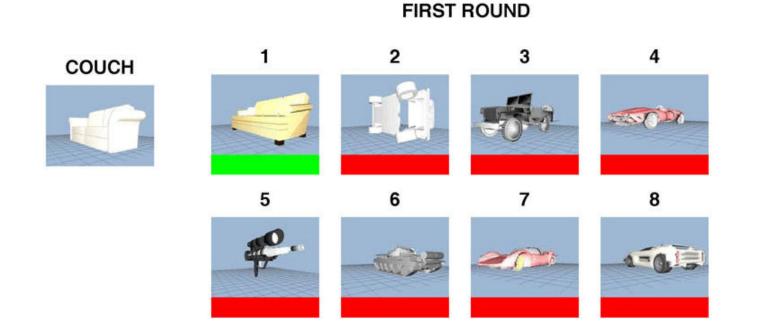
User marks 4 relevant and 4 non-relevant models among the first 8

Two-Round On-line Example: "Human"



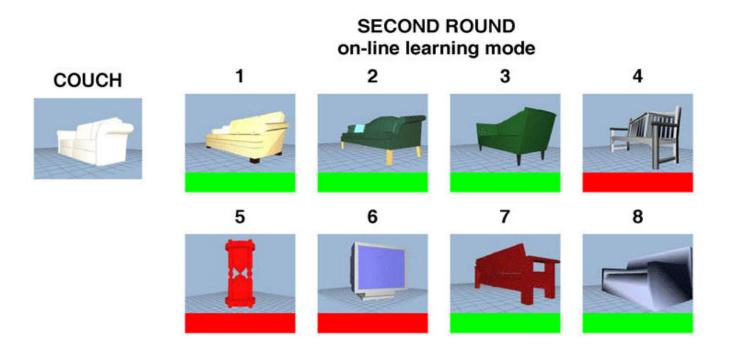
All the retrieved models are relevant after the second round

Two-Round On-line Example: "Couch"



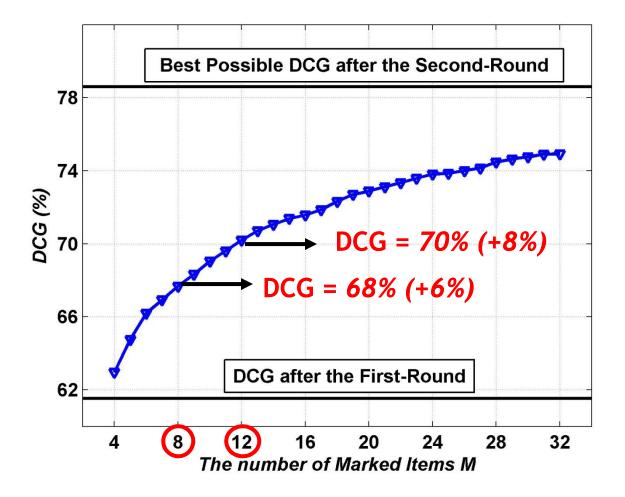
User marks 1 relevant and 7 non-relevant models among the first 8

Two-Round On-line Example: "Couch"



5 models are relevant after the second round

Two-Round On-line: Convergence



Score Fusion: Performance Summary

Additive DCG Gain in all Protocols (%)

Two-Round	Two-Round	Two-Round	Bimodal
On-line (M=8)	On-line (M=12)	Offline	
6.0	8.0	5.0	2.0-4.0

Reminder

Performance of top descriptors differ only by 1-2 %.

Observation

Bimodal: Harder task than Two-Round

References

3D SHAPE DESCRIPTION

C. B. Akgül, B. Sankur, Y. Yemez, F. Schmitt. **3D Model Retrieval using Probability Density Based Shape Descriptors.** <u>IEEE Trans on Pattern Analysis and Machine Intelligence</u>, June 2009.

SIMILARITY LEARNING

C. B. Akgül, B. Sankur, Y. Yemez, F. Schmitt.

Similarity Learning for 3D Object Retrieval using Relevance Feedback and Risk Minimization.

Int. Journal of Computer Vision, Special Issue on 3D Object Retrieval, to appear, 2010.