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Abstract

In this work, we introduce a score fusion scheme to improve the 3D object retrieval performance. The state of
the art in 3D object retrieval shows that no single descriptor is capable of providing fine grain discrimination re-
quired by prospective 3D search engines. The proposed fusion algorithm linearly combines similarity information
originating from multiple shape descriptors and learns their optimal combination of weights by minimizing the
empirical ranking risk criterion. The algorithm is based on the statistical ranking framework [CLVO7], for which
consistency and fast rate of convergence of empirical ranking risk minimizers have been established. We report the
results of ontology-driven and relevance feedback searches on a large 3D object database, the Princeton Shape
Benchmark. Experiments show that, under query formulations with user intervention, the proposed score fusion
scheme boosts the performance of the 3D retrieval machine significantly.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Search and Retrieval]: Retrieval

Models 1.5.1 [Models]: Statistical

This work was supported by Bogazigi University Project No. 05SHA203.

1. Introduction

Next generation search engines will enable query formula-
tions, other than text, relying on visual information encoded
in terms of images and shapes. The 3D search technology,
in particular, targets specialized application domains rang-
ing from computer aided design to molecular data analy-
sis. In this search modality, the user picks a query from a
catalogue of 3D objects and requests from the retrieval ma-
chine to return a set of "similar" database objects in decreas-
ing relevance. 3D object retrieval hinges on shape matching,
that is, determining the extent to which two shapes resem-
ble each other. Shape matching is commonly done by reduc-
ing the characteristics of the shapes to vectors or graph-like
data structures, called shape descriptors [BKS™05, TV04,
1JL705], and then, by evaluating the similarity degrees be-
tween the descriptor pairs. We call the similarity degree be-
tween two descriptors as the matching score between two
shapes. In the retrieval mode, the matching scores between
a query and each of the database objects are sorted. The re-
trieval machine then displays database objects in descending
order of the scores. Effective retrieval means that the objects
displayed in the upper part of the list better match to the
query object than the rest of the list.

Ongoing research in 3D object retrieval shows that no
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single shape descriptor is capable of providing satisfactory
retrieval performance for a broad class of shapes and in-
dependently of the associated semantics [TV04, SMKF04].
Figure 1 displays the response of two different descriptors
from the density-based framework [ASYS07a], A and B, to
two different queries from the Princeton Shape Benchmark
(PSB) [SMKF04]. The first query is a biplane model and the
second one is a chair model. In response to the biplane, de-
scriptor A returns correctly four biplanes in the first three
and in the sixth matches, while the fourth and the fifth re-
trieved models are not biplanes, but still flying objects that
can be considered as relevant. Descriptor B, on the other
hand, returns models that are completely irrelevant to the
biplane query (three shelf models, two coarse human mod-
els and a microscope!). For the chair query, Descriptor B
is more successful since it has retrieved six chair models;
while descriptor A, after first three correct matches, returns
two tree models and a monument! Thus, the adequacy of
the descriptors A or B depends on the nature of the query.
Furthermore, these examples can be multiplied; for instance,
there are cases where sets of relevant matches for different
descriptors are even disjoint. Much like in the case of classi-
fier construction, we conjecture that improved retrieval algo-
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Figure 1: Response of two different descriptors

rithms can be built by using diverse set of descriptors/scores
provided there is a practical way to "fuse” them.

As the example in Figuré illustrates, experimental ev-

idence motivates us to consider a score fusion scheme that
uses a certain amount of supervision. The question here can

be formulated as follows. How can one combine a set of sim-
ilarity scores{sc} into a final scoring functio = ', WS¢

to achieve better retrieval result than with anyone of them?
In the present work, we tackle this score fusion problem by
minimizing a convex regularized version of the empirical
risk associated with ranking instances. We follow the statis-
tical learning framework developed i€[V07] and identify
that learning a linear scoring function can be cast into a bi-
nary classification problem in the score difference domain.
Given a query, the set of weigh{sy } found as the solution

of the binary classification problem can be considered as op-
timal also with respect to the empirical risk associated with
ranking instances. Statistical ranking has found many appli-
cations such as text-based information retrieval and collab-
orative filtering HGOO0Q Joa02FISS03. Our score fusion
approach can be employed with different types of supervi-
sory information provided by the user, as in ontology-driven
search and relevance feedback.

The contribution of the present work is three-fold. First,
to the best of our knowledge, there is no prior work in
the 3D domain using statistical ranking techniques to com-
bine shape similarity information coming from different
descriptors. Second, the present work is a direct applica-
tion of a recently introduced rigorous statistical framework
[CLVO7], where consistency and fast rate of convergence
of empirical ranking risk minimizers have been established.
Third, our algorithm operates on scores, and not on descrip-
tors themselves, unlike other risk minimization-based ap-
proaches HGOO0(Q. This adds greater generality and flexi-
bility to our approach for a broad spectrum of retrieval ap-
plications.

A and B to two different quieiésneand chair

The paper is organized as follows. In Sect@nwe in-
troduce the score fusion problem and give a solution based
on support vector machines (SVMHTFO01. We also ex-
plain the use of our score fusion algorithm in two different
protocols,bimodal and two-round searches, which can be
viewed as particular instances of ontology-driven search and
relevance feedback respectively. In Sect®ynwe give an
overview of the density-based frameworkgYS073 that
we use for shape description. In Sectihrwe experiment
on PSB BMKF04] and show the degree by which we can
boost the retrieval performance of density-based shape de-
scriptors using the proposed score fusion algorithm. In the
final Sectionb, we conclude and discuss further research di-
rections.

2. Score Fusion by Ranking Risk Minimization
2.1. The Score Fusion Problem

Consider the problem of ranking two generic database
shapescandx’ based on their relevance to a query shape
Suppose that we have acces&tsimilarity valuess, ands,

for each of the pairgx, g) and(x',q) respectively. Thesk
similarity measures can be obtained from different descrip-
tor sets and/or by using different metrics operating on the
same set of descriptors. In our context, a similarity value
s 2 sim(x, q) arises from a certain shape descriptor and re-
flects some, possibly different, geometrical and/or topologi-
cal commonality between the database sheg®d the query
shapeay. An ideal similarity measure should score higher for
similar shape pairs as compared to less similar ones. In re-
trieval problems, a shapein the database that is more sim-
ilar to the queryq is expected to be ranked higher than any
other intrinsically less similar shapé These similarity val-
ues/scores can be written more compactly in the vector form
ass=[sy,...,] € RX. Our objective is to build a scalar-
valued final scoring functiorp of the form¢(x,q) = (w, s),
wherew = [w,...,Wk] € RX is a vector, whose components

submitted taEurographics Workshop on 3D Object Retrieval (2008



Submission ID: 1005 / Similarity Score Fusion for 3D Object Retrieval 3

form the weights of the corresponding scasgsThe scoring simply byv £ s— ¢, the difference between the score vec-
functiond should assign a higher score to the more relevant torss ands’ of the shapes andx’ respectively. With this
shape, i.e., it should satisfy the following property: new notation and writing the scoring functigrexplicitly in
o(x.q) > 6(X,q) if xis more relevant tg thanx, terms of its parameters, Eg.1 now reads as
! ; 1
$ood) <dlx,q)  otherwise, ERRW;Q) = £ 3 [{zmn(W,vmn) <0}, (2)
where ties are arbitrarily broken. The relevance of the shapes m<n

xandx’ to the queryg can be encoded by indicator variables where the index pairém,n) correspond to pairs of shapes
y andy respectively. In this work, we assume crisp rele- xmn andxn whose respective relevance labgisandyn are

vances/ = 1 (relevan) andy = —1 (not relevany, in which different @mn is either 1 or—1). Thus, we have converted
case, the above property reads as: ERRwritten in terms ofscorevectorss andrelevancendi-
x.q) > (X ify—y >0, catorsy (Eq.1) into an empirical classification error in terms
$EX’ gg < $EX/’$ if z_; <0 of score differenceectorsv andrankindicatorsz (Eq. 2). In

both cases, the sought after parameter vestisrthe same.
As is the common practice in statistical learnigT[F01],

we replace the 0-1 loss in EQ.with a convex loss func-
tion and we add a regularization term on some norrmvof
to obtain a tractable convex optimization problemainin
particular, using théingeloss as the convex loss and the
L?-norm as the regularization term leads to the well-known
SVM problem, for which we can find a global solution.

The functiong must subsume the similarity information
residing in the individual scorex in order to emulate the
ideal similarity notion between shapes, hence to achieve a
better retrieval performance. Given the linear faj(w, q) =
(w,s), score fusion can be formulated as the problem of find-
ing a weight vectorv, which is optimal according to some
criterion, as we explain in the following section.

In summary, the problem of finding the parameter vector

2.2. Ranking Risk Minimization w of the _Iinear scorin_g functiop i; the same as the SVM

problem in the domain of score difference vectors. The key
The criterion of interest is the so-callenpirical ranking point here is thathe weight vector learned by SVM in the
risk (ERR defined as the number of misranked pair of data- gcore difference domain can directly be used to evaluate the
base shapelsn, xn) with respect to a query. Formally, we  scoring function at the matching stagile can now summa-
can write this criterion as: rize the training algorithm to learn the parametenf the
ERRO:) =1 3 T{(00m Q) 000, 0) - (ym—yn) <0} SCOnmgfunctiond:

m<n Given
@

whereT is the number of shape paifsm,xn) andI{-} is Database shapes
the 0-1 loss, which is one if the predicate inside the braces  Queryq
is true and zero otherwis&RRsimply counts the number Relevance labelg,

of misranked shape pairs in the database with respect to the K different shape description schemes
query. Basically, ith (xm, ) < ¢(xn,q) butym > yn, the scor-
ing functiond(-,q) (wrongly) assigns a higher score xa
than toxm while xm is relevant to the querg but x, is not. (2) Identify the pairs of label§ym, yn) such thaym—yn # 0.
Thus the scoring function has made an error in ranking
andxm with respect to the queryandERRshould be incre-
mented by one. Such misrankings are naturally undesirable
and our task is to find a scoring function (or more appropri- (4) Run the SVM algorithm to learn the weight vectarc
ately its parametens) so that the number of misranked pairs R, using the sef(Vmn,zmn)m<n € RK x {—1,1}.

is as small as possible.

(1) Calculatea score vectos, € RX for each(xn, g)-pair.

(3) Construct the score difference vectoksnn and their
rank indicatorsgmn.

We can identifyERR as an empirical classification er-  2.3. Applications
ror. To see this, first let 2 (y—y')/2, taking values within

{~1,0,1}. We observe then the following: In this section, we illustrate our score fusion scheme in two

different retrieval protocols: (ipimodal searctand (ii) two-
7o { 1 xshould be ranked higher thah round search

—1 xshould be ranked lower that.
In the bimodal protocglthe user provides a textual de-

Whenz =0, i.e., if shapex andx’ are both relevanty(= scription associated with the query shape (see Fi@ure

y = 1) or bothnot relevant y =y = —1), we have no par- The keyword can be selected from one of the predefined
ticular preference in ranking them with respect to each other shape concepts. We call this protocoltasodal since the
(we can decide arbitrarily). Corresponding to each non-zero query is formulated in terms of two information modalities,
z, we can define score difference vectar, which is given a 3D shape and a concept keyword. This protocol can be
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Figure 2: Bimodal protocol

viewed as an ontology-driven search and necessitates an off-

line stage during which the weight vectors associated with
each shape concept are learned. Note that the criterion of
Section2.2 is per-queryand should be extended toper-
conceptrisk ERRw,C), whereC stands for the working
concept. This can be done straight-forwardly by averaging
per-query risks associated with a given concept, that is,

ERRw;C) = L z ERRw;Q),
|C| qu

where|C| is the number of training shapes belonging_to

However, since the minimization should be performed in the

score difference domain, the problem turns out to be a very

large-scale one even for moderately sized classes. Given a

training databas® of size|D|, the number of score differ-
ence instances per concepti@ x (|C| — 1) x (|D| —|C]),
e.g., for|D| = 1000 and forlC| = 10, the number of train-
ing instances becomes 90000, in which case we incur to
memory problems using standard SVM packa@dsJ1]. In
order to maintain the generality and practical usability of our
approach in this protocol, we develop two heuristics:

e Average per-query weight vector.The weight vectow
for a given shape concept is computed as the average
of the per-query weight vectossq corresponding to the
training shapes within that class, that is,

The per-query weight vectairg is obtained by the algo-
rithm given in Sectio2.2 We denote this heuristic by
AVE-W

Per-class risk minimization using per-query support
vectors. In this second heuristic, we exploit the sparsity
of the SVM solution, which means that the per-query
weight vector found by the algorithm in Secti@? is
the weighted sum of usually a small humber of training
score difference instances, calledsapport vectorgsvs)

in general SVM terminology. It is a well known fact that,
for a given binary classification problem, the SVM so-
lution remains identical when only the svs are provided
for training HTFO1. The svs form a parsimonious surro-
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gate for the set of training instances with exactly the same
separability properties in the original data. Accordingly,
the learning of a per-concept weight vector can be car-
ried in two stages. First, we identify the svs of per-query
problems by per-query minimization. Then, we pool all
the svs corresponding to a given concept and perform the
minimization using this newly formed set to learn the per-
concept weight vector. We repeat this procedure as many
times as the number of predefined shape concepts. We de-
note this heuristic b CMIN-W.

The two-round protocok a particular form of relevance
feedback and requires user intervention during the querying
process. In the first round, the retrieval machine returns a
ranked list of shapes using a simple scoring scheme, e.g.,
the sum of the available raw scorgs = Sy . After the
first found, we can invoke the score fusion scheme in two
different ways:

e On-line. The user mark# shapes among the returned
ones, as eitheelevant(y = 1) or non-relevanty = —1)
with respect to his/her query (see Fig@)eln the second
round, the retrieval machine returns a refined ranked list
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using the scoring functiopw = (w,s). The weightvector  rapje 1: Retrieval Performance of State-of-the-Art Descrip-
w is learnedon-line using theM marked shapes as train- s on PSB Test Set

ing instances. In order not to demand too much from the
user,M should not be large and is typically limited to a
few first shapes. For example, whish= 8 and the num-

NN (%) DCG (%)

ber of positiveM™ and negative instancéd~ are equal DBl 66.5 66.3
(M* =M~ = 4), the total number of training score dif- REXT 60.2 60.1
ference vectors is just 16. Consequently, on-line learning ReT®S  67.4 65.0

is computationally feasible.

e Off-line. In this variant of the two-round search, all the
shapes in the database have their individual weight vec-
tors stored, which have already been leara#dine (see
Figure4). The individual per-query weight vectors can be
obtained as in the bimodal protocol. At querying time, the e ¢ ) )
user is asked to mark just the first relevant item in the ~ S! [KvD92], which IS enriched by the radial distanée
displayed page of the results. The second round evaluates 2nd the alignment = [(RN)[.
the scoring functiorpw = (w,s) using the weight vector Using DBF, these local features are summarized into
corresponding to the marked shape. Clearly, this protocol global shape descriptors that we denoteRasT- and S-
does not perform any on-line learning and constitutes a descriptors. A simple way to benefit from different types of
less demanding option than the former in terms of user shape information carried by these descriptors is to sum their
interaction needed, as the user is asked to mark just one corresponding similarity valueg, that is,¢; = Sy S. The
item. retrieval performance of this basic score fusion, denoted as

RPTPS, on PSB test set (907 objects in 92 classes) is shown
in the third row of Tablel in terms of discounted cumulative

3. Density-Based Shape Description Framework gain (DCG) and nearest neighbor (NN) measures. Note that

this fusion is unsupervised and does not involve any statisti-

cal learning.

solute normal distance of the tangent plane to the center
of mass andl is the unit normal at the point.

e At second-order, th&-feature(R, A, SI) carries categor-
ical local surface information through the shape index

Although the research on 3D shape descriptors for retrieval
started just a decade ago or so, there is a considerable
amount of work reported so far. The most up-to-date and  In Table1, we also display performance figures corre-
complete reviews in this rapidly evolving field are given sponding to two state-of-the-art descriptors: depth buffer
in [BKS*05, TV04, 1JL*05]. The score fusion algorithm de- ~ images (DBI) BKS*05] and radialized extent function
scribed in the previous section can be used with any type (REXT) [Vra03. DBI is a 2D image-based method, which
of shape descriptors. In the present work, we employ a rela- describes a shape by the low-frequency Fourier coefficients
tively recent 3D shape description methodology, the density- ©f six depth buffer images captured from orthogonal par-
based framework (DBFYSYS073. As we expose in this allel projections. REXT, on the other hand, relies on a
section, DBF produces a rich set of descriptors, which has a purely 3D idea by describing the shape as a collection of

good retrieval performance compared to other state-of-the- spherical functions giving the maximal distance from cen-
art methods. ter of mass as a function of spherical angle and radius. DBI

) ) among 2D methods and REXT among 3D methods are the
_In DBF, a shape descriptor consists of the sampled proba- pest performing descriptors on PSB test set in their own
bility density function (pdf) of a local surface feature evalu-  methodological categories based on the results reported in
ated on the surface of the 3D object. The sampling locations [BKS*05] and [FS0q respectively. From Tabld, we see
of the pdf are calletargetsand the pdf value at each targetis  hat (i) RET®S is significantly better than REXT in terms

estimated using kernel density estimation. The vector of esti- of hoth DCG and NN; (ii) its performance is comparable to
mated feature pdf values is a density-based shape descriptorinat of DBI.

In [ASYSO074, the discriminative power of several multi-
variate surface features within DBF has been investigated on
different databases. Three of these features are particularly
interesting as they capture local surface information up to
second-order:

Learning-based fusion of two or three scores does not
have enough degrees of freedom to boost the retrieval per-
formance significantly. We conjecture that we can reap the
benefits of statistical ranking upon employing a larger set
of descriptors produced by DBF. To prove our conjecture,
e At zero-order, th&R-feature(R, R) parametrizes the coor-  we decided to decompose the pdf of a feature into cross-

dinates of a surface point at a distafitfom the object’s sections. Observe first that all of tRe,T- andS- descriptors

center of mass. The unit direction of the ray traced from are radialized in the sense that they capture the distribution
the center of mass to the point is denoted by of somesubfeatureat concentric shells with radiug (or dy

e At first-order, theT-feature(DN) parametrizes the tan-  for theT-descriptor). The subfeatures are the radial direction
gent plane at a surface point. HeE stands for the ab- R for theR-descriptor, the normal for the T-descriptor and
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the (A, Sl)-pair for theS-descriptor. We refer to these distrib-  1ap1e 2: DCG (%) Performance of Score Fusion in the Bi-
utions agross-sectionalescriptors. For instance, letus take  odal Protocol

the Nr x Ng = 8 x 128= 1024-target pdf of th&®-feature,
whereNg = 8 is the number of points sampled within the Rule PSB SetA PSB SetB

R-domain andNy = 128 is the number of points sampled on SUM 61.628.1 60.6-28.1

the unit-sphere. The 1024-poiRtdescriptor is then consid- AVE-W 71.8£26.5 62.6:28.4

ered as\r = 8 chunks ofN; = 128-point cross-sectional de- PCMIN-W  74.9£25.2 62.8-27.7

scriptors, each of which can be used to evaluate a similarity

scores between two objects at a given concentric shell, say Taple 3: DCG (%) Performance of Score Fusion in the
at a distancey from the origin. Of course, these individual Bimodal Protocol when the basiSUM rule instead of

scores do not capture the shape similarity to the full extent. learning-based score fusion has been used for negatively af-
However, this decoupling adds more degrees of freedom 10 focteq concepts

the subsequent score fusion stage, where we learn a distinct

weight wy for each of the individual scoresx by ranking Rule PSB SetB  # P.A. Concepts
risk minimization. Accordingly, for each of the-, T- and SUM 60.6£28.1 -
S-descriptors, we obtain 8 per-chunk similarity scores and AVE-W  64.0+24.1 106

work with 24 scores in total. PCMIN-W  64.4+-23.9 100

P.A. Concepts: Positively Affected Concepts

4. Experiments

We have tested our score fusion algorithm on a modified ver-  might become more complex than what can be solved us-
sion of PSB. Originally, PSB training and test sets do not  ing a simple linear decision boundary. However, if the lin-
share the same shape classes. Accordingly, we have merged ear similarity model were totally unacceptable, we would
these two sets into a single one, consisting of 1814 mod-  not expect a good performance on the training set either.
els in 161 classes. The number of classes shared by original In fact, in only 4 out of 161 concepts in PSB Set A, the
training and test sets is 21, hence the merged PSB contains  AVE-Wfusion has worsened the performance by not more
90+ 92— 21 = 161 classes. We have then split them into than 2.3% DCG points with respect to the baseitéM

two subsets A and B of sizes 946 and 868, drawing them  rule. In PSB Set B, on the other hand, 61 concepts (again
randomly from the same 161 classes. This reorganization of  out of 161) have suffered from an average performance
the PSB database offers us an even more challenging prob- loss of 8.5% DCG points.

lem since the number of classes is increased from 92to 161. e In Table3, we provide the DCG scores when we use the
basic SUM rule instead of learning-based score fusion
(AVE-W or PCMIN-W) for negatively affected concepts
(i.e., those concepts for which learning-based score fu-

Recall that the bimodal search protocol assumes the exis- Sion has worsened the DCG performance). The right most
tence of a training set categorized into a fixed set of con-  columns give the number of positively affected concepts.
cepts. Learning is done off-line. In the bimodal experiments, ~ We deduce that the linear similarity model is adequate for
we have taken the PSB Set A as the training set, which we  the training set and generalizes well on the previously un-
have used to learn per-concept weight vectors. PSB Set Bhas ~seen instances e$100 concepts in the test set.

been reserved for testing purposes. In Tahlave provide

the results of fusing &-scores, 8T and 8S-scores, mak-
ing 24 scores in total. We also display the results of the basic
SUMrule for reference (i.e., that &G T&S). Although, the In the two-round query formulation, the benefits of the pro-
learning-based score fusion does improve the average DCG posed score fusion scheme become much more evident. To
performance significantly on the training set, it does not lead evaluate the performance in this search protocol, we have re-
to a significant gain in the test set (only 2% using AWE-W served the PSB Set A as the database shapes and PSB Set B
heuristic). That s, learning-based score fusion does not work as the query shapes. The first round results have been ob-
well for certain concepts. This might be due to heuristics- tained by the basi8UMrule (i.e.,RGT®S).

based learning of per-concept weight vectors, but, we think
that the following arguments better explain the situation:

4.1. Performance in the Bimodal Search

4.2. Performance in the Two-round Search

In Figure5, we display the DCG performance of the-

line sub-protocol as a function of the number mfrked

e For some concepts, the linear similarity model might not itemsM from 4 to 32. In this figure, the line at the bottom
be flexible enough to maintain good classification accu- stands for the DCG of the first round (i.e., the performance
racy in the score difference domain. When instances from of the SUMrule, DCG =~62%). The line at the top stands
gueries belonging to a certain concept are pooled together, for the DCG when all database models are marked as ei-
the discrimination problem in the score difference domain ther relevant or non-relevant, serving as an empirical ideal,
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Figure 5: DCG performance of the two-round search with
on-linelearning as a function of the number pfarkedtems
M in the first round

Two-Round Protocol Off-line Version

DCG = 66% (+5%)

[ DCG after the First-Round

12 20 24 28 32
The number of Displayed ltems M

a 8

Figure 6: DCG performance of the two-round search with
off-line learning as a function of the number displayed
items M in the first round

i.e., the maximum achievable DCG on this data set using the
presented score fusion algorithm and the running set of de-
scription schemes (DCG =79%). Based on these results,
we make the following comments:

e Asthe number of marked itenhd increases, we observe a
steep increase in the DCG performance, compatible with
theoretical fast rates of convergence provenGh\fO7].

The DCG profile converges smoothly to the empirical
ideal as the user marks more and more items in the first
round.

To give certain performance figures, fdr= 8, DCG ob-
tained after fusing the scores becomea8%, giving a 6%
improvement compared to the baseline. The 70% DCG
barrier is reached aftél = 12 marked items.

In Figure6, we display the DCG performance of thé-
line sub-protocol as a function of the numberdi$played
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items M again 4 to 32. We emphasize that, in this mode,
M refers to the number dfisplayeditems and the user in-
teraction needed is limited to mark just one shape, the first
relevant one after the first round. Accordingly, heveis not
related to the convergence of the algorithm. Increasing
does not cost anything in terms of user interaction. After this
clarification, we have the following comments:

e At M = 1, score fusion boosts the retrieval performance
by ~4% and the DCG profile keeps a slow but constant
increase as the number of displayed iteldhsn the first
round is increased.

e In a typical retrieval scenario, displaying = 32 items
has no cost. These results tell us that we can obtain DCG
improvements by~5% with respect to the baseline. Not-
ing that the performances of top 3D shape descriptors dif-
fer only by a couple of percentage points, this 5% gain can
be considered as significant and comes virtually at no cost
at the querying process. The only bottleneck is the off-line
processing of the database shapes to learn the weight vec-
tors, which may eventually be used in the second round.

With on-line score fusion, we can obtain significant im-
provements as the user is asked to mark more and more
items. In special applications where the user voluntarily
marks the demanded number of items, the on-line scheme
is preferable. The off-line scheme, on the other hand, comes
at no cost at query time and still yields satisfactory improve-
ments. Sample two-round searches using these two variants
are shown in Figureg and8.
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