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Figure 1: Response of two different descriptors A and B to two different queriesbiplaneandchair

rithms can be built by using diverse set of descriptors/scores
provided there is a practical way to "fuse" them.

As the example in Figure1 illustrates, experimental ev-
idence motivates us to consider a score fusion scheme that
uses a certain amount of supervision. The question here can
be formulated as follows. How can one combine a set of sim-
ilarity scores{sk} into a final scoring functionϕ = ∑k wksk
to achieve better retrieval result than with anyone of them?
In the present work, we tackle this score fusion problem by
minimizing a convex regularized version of the empirical
risk associated with ranking instances. We follow the statis-
tical learning framework developed in [CLV07] and identify
that learning a linear scoring function can be cast into a bi-
nary classification problem in the score difference domain.
Given a query, the set of weights{wk} found as the solution
of the binary classification problem can be considered as op-
timal also with respect to the empirical risk associated with
ranking instances. Statistical ranking has found many appli-
cations such as text-based information retrieval and collab-
orative filtering [HGO00, Joa02, FISS03]. Our score fusion
approach can be employed with different types of supervi-
sory information provided by the user, as in ontology-driven
search and relevance feedback.

The contribution of the present work is three-fold. First,
to the best of our knowledge, there is no prior work in
the 3D domain using statistical ranking techniques to com-
bine shape similarity information coming from different
descriptors. Second, the present work is a direct applica-
tion of a recently introduced rigorous statistical framework
[CLV07], where consistency and fast rate of convergence
of empirical ranking risk minimizers have been established.
Third, our algorithm operates on scores, and not on descrip-
tors themselves, unlike other risk minimization-based ap-
proaches [HGO00]. This adds greater generality and flexi-
bility to our approach for a broad spectrum of retrieval ap-
plications.

The paper is organized as follows. In Section2, we in-
troduce the score fusion problem and give a solution based
on support vector machines (SVM) [HTF01]. We also ex-
plain the use of our score fusion algorithm in two different
protocols,bimodal and two-round searches, which can be
viewed as particular instances of ontology-driven search and
relevance feedback respectively. In Section3, we give an
overview of the density-based framework [ASYS07a] that
we use for shape description. In Section4, we experiment
on PSB [SMKF04] and show the degree by which we can
boost the retrieval performance of density-based shape de-
scriptors using the proposed score fusion algorithm. In the
final Section5, we conclude and discuss further research di-
rections.

2. Score Fusion by Ranking Risk Minimization

2.1. The Score Fusion Problem

Consider the problem of ranking two generic database
shapesx andx′ based on their relevance to a query shapeq.
Suppose that we have access toK similarity valuessk ands′k
for each of the pairs(x,q) and(x′,q) respectively. TheseK
similarity measures can be obtained from different descrip-
tor sets and/or by using different metrics operating on the
same set of descriptors. In our context, a similarity value
sk , simk(x,q) arises from a certain shape descriptor and re-
flects some, possibly different, geometrical and/or topologi-
cal commonality between the database shapex and the query
shapeq. An ideal similarity measure should score higher for
similar shape pairs as compared to less similar ones. In re-
trieval problems, a shapex in the database that is more sim-
ilar to the queryq is expected to be ranked higher than any
other intrinsically less similar shapex′. These similarity val-
ues/scores can be written more compactly in the vector form
ass = [s1, . . . ,sK ] ∈ RK . Our objective is to build a scalar-
valued final scoring functionϕ of the formϕ(x,q) = 〈w,s〉,
wherew = [w1, . . . ,wK ]∈RK is a vector, whose components
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form the weights of the corresponding scoressk. The scoring
functionϕ should assign a higher score to the more relevant
shape, i.e., it should satisfy the following property:

ϕ(x,q) > ϕ(x′,q) if x is more relevant toq thanx′,
ϕ(x,q) < ϕ(x′,q) otherwise,

where ties are arbitrarily broken. The relevance of the shapes
x andx′ to the queryq can be encoded by indicator variables
y and y′ respectively. In this work, we assume crisp rele-
vancesy = 1 (relevant) andy =−1 (not relevant), in which
case, the above property reads as:

ϕ(x,q) > ϕ(x′,q) if y−y′ > 0,
ϕ(x,q) < ϕ(x′,q) if y−y′ < 0.

The functionϕ must subsume the similarity information
residing in the individual scoressk in order to emulate the
ideal similarity notion between shapes, hence to achieve a
better retrieval performance. Given the linear formϕ(x,q) =
〈w,s〉, score fusion can be formulated as the problem of find-
ing a weight vectorw, which is optimal according to some
criterion, as we explain in the following section.

2.2. Ranking Risk Minimization

The criterion of interest is the so-calledempirical ranking
risk (ERR) defined as the number of misranked pair of data-
base shapes(xm,xn) with respect to a queryq. Formally, we
can write this criterion as:

ERR(ϕ;q) =
1
T ∑

m<n
I{(ϕ(xm,q)−ϕ(xn,q)) · (ym−yn) < 0} .

(1)
whereT is the number of shape pairs(xm,xn) and I{·} is
the 0-1 loss, which is one if the predicate inside the braces
is true and zero otherwise.ERRsimply counts the number
of misranked shape pairs in the database with respect to the
query. Basically, ifϕ(xm,q) < ϕ(xn,q) butym > yn, the scor-
ing functionϕ(·,q) (wrongly) assigns a higher score toxn

than toxm while xm is relevant to the queryq but xn is not.
Thus the scoring function has made an error in rankingxn

andxm with respect to the queryq andERRshould be incre-
mented by one. Such misrankings are naturally undesirable
and our task is to find a scoring function (or more appropri-
ately its parametersw) so that the number of misranked pairs
is as small as possible.

We can identifyERR as an empirical classification er-
ror. To see this, first letz, (y− y′)/2, taking values within
{−1,0,1}. We observe then the following:

z=
{

1 x should be ranked higher thanx′,
−1 x should be ranked lower thanx′.

Whenz = 0, i.e., if shapesx andx′ are both relevant (y =
y′ = 1) or bothnot relevant (y = y′ = −1), we have no par-
ticular preference in ranking them with respect to each other
(we can decide arbitrarily). Corresponding to each non-zero
z, we can definea score difference vectorv, which is given

simply byv , s− s′, the difference between the score vec-
tors s ands′ of the shapesx andx′ respectively. With this
new notation and writing the scoring functionϕ explicitly in
terms of its parametersw, Eq.1 now reads as

ERR(w;q) =
1
T ∑

m<n
I{zm,n 〈w,vm,n〉< 0} , (2)

where the index pairs(m,n) correspond to pairs of shapes
xm andxn whose respective relevance labelsym andyn are
different (zm,n is either 1 or−1). Thus, we have converted
ERRwritten in terms ofscorevectorss andrelevanceindi-
catorsy (Eq.1) into an empirical classification error in terms
of score differencevectorsv andrank indicatorsz (Eq.2). In
both cases, the sought after parameter vectorw is the same.
As is the common practice in statistical learning [HTF01],
we replace the 0-1 loss in Eq.2 with a convex loss func-
tion and we add a regularization term on some norm ofw
to obtain a tractable convex optimization problem inw. In
particular, using thehinge loss as the convex loss and the
L2-norm as the regularization term leads to the well-known
SVM problem, for which we can find a global solution.

In summary, the problem of finding the parameter vector
w of the linear scoring functionϕ is the same as the SVM
problem in the domain of score difference vectors. The key
point here is thatthe weight vector learned by SVM in the
score difference domain can directly be used to evaluate the
scoring function at the matching stage.We can now summa-
rize the training algorithm to learn the parameterw of the
scoring functionϕ:

Given

Database shapesxn

Queryq
Relevance labelsyn

K different shape description schemes

(1) Calculatea score vectorsn ∈ RK for each(xn,q)-pair.

(2) Identify the pairs of labels(ym,yn) such thatym−yn 6= 0.

(3) Construct the score difference vectorsvm,n and their
rank indicatorszm,n.

(4) Run the SVM algorithm to learn the weight vectorw ∈
RK , using the set{(vm,n,zm,n)}m<n ⊂ RK ×{−1,1}.

2.3. Applications

In this section, we illustrate our score fusion scheme in two
different retrieval protocols: (i)bimodal searchand (ii) two-
round search.

In the bimodal protocol, the user provides a textual de-
scription associated with the query shape (see Figure2).
The keyword can be selected from one of the predefined
shape concepts. We call this protocol asbimodalsince the
query is formulated in terms of two information modalities,
a 3D shape and a concept keyword. This protocol can be
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Figure 2: Bimodal protocol

viewed as an ontology-driven search and necessitates an off-
line stage during which the weight vectors associated with
each shape concept are learned. Note that the criterion of
Section2.2 is per-queryand should be extended to aper-
conceptrisk ERR(w,C), whereC stands for the working
concept. This can be done straight-forwardly by averaging
per-query risks associated with a given concept, that is,

ERR(w;C) =
1
|C| ∑

q∈C
ERR(w;q),

where|C| is the number of training shapes belonging toC.
However, since the minimization should be performed in the
score difference domain, the problem turns out to be a very
large-scale one even for moderately sized classes. Given a
training databaseD of size|D|, the number of score differ-
ence instances per concept is|C| × (|C| − 1)× (|D|− |C|),
e.g., for|D| = 1000 and for|C| = 10, the number of train-
ing instances becomes∼ 90000, in which case we incur to
memory problems using standard SVM packages [CL01]. In
order to maintain the generality and practical usability of our
approach in this protocol, we develop two heuristics:

• Average per-query weight vector.The weight vector̂wC
for a given shape concept is computed as the average
of the per-query weight vectorŝwq corresponding to the
training shapes within that class, that is,

ŵC =
1
|C| ∑

q∈C
ŵq.

The per-query weight vector̂wq is obtained by the algo-
rithm given in Section2.2. We denote this heuristic by
AVE-W.

• Per-class risk minimization using per-query support
vectors. In this second heuristic, we exploit the sparsity
of the SVM solution, which means that the per-query
weight vector found by the algorithm in Section2.2 is
the weighted sum of usually a small number of training
score difference instances, called assupport vectors(svs)
in general SVM terminology. It is a well known fact that,
for a given binary classification problem, the SVM so-
lution remains identical when only the svs are provided
for training [HTF01]. The svs form a parsimonious surro-

Figure 3: Two-round protocolon-lineversion

Figure 4: Two-round protocoloff-line version

gate for the set of training instances with exactly the same
separability properties in the original data. Accordingly,
the learning of a per-concept weight vector can be car-
ried in two stages. First, we identify the svs of per-query
problems by per-query minimization. Then, we pool all
the svs corresponding to a given concept and perform the
minimization using this newly formed set to learn the per-
concept weight vector. We repeat this procedure as many
times as the number of predefined shape concepts. We de-
note this heuristic byPCMIN-W.

The two-round protocolis a particular form of relevance
feedback and requires user intervention during the querying
process. In the first round, the retrieval machine returns a
ranked list of shapes using a simple scoring scheme, e.g.,
the sum of the available raw scoresϕ1 = ∑k sk. After the
first found, we can invoke the score fusion scheme in two
different ways:

• On-line. The user marksM shapes among the returned
ones, as eitherrelevant(y = 1) or non-relevant(y = −1)
with respect to his/her query (see Figure3). In the second
round, the retrieval machine returns a refined ranked list
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using the scoring functionϕw = 〈w,s〉. The weight vector
w is learnedon-lineusing theM marked shapes as train-
ing instances. In order not to demand too much from the
user,M should not be large and is typically limited to a
few first shapes. For example, whenM = 8 and the num-
ber of positiveM+ and negative instancesM− are equal
(M+ = M− = 4), the total number of training score dif-
ference vectors is just 16. Consequently, on-line learning
is computationally feasible.

• Off-line. In this variant of the two-round search, all the
shapes in the database have their individual weight vec-
tors stored, which have already been learnedoff-line (see
Figure4). The individual per-query weight vectors can be
obtained as in the bimodal protocol. At querying time, the
user is asked to mark just the first relevant item in the
displayed page of the results. The second round evaluates
the scoring functionϕw = 〈w,s〉 using the weight vector
corresponding to the marked shape. Clearly, this protocol
does not perform any on-line learning and constitutes a
less demanding option than the former in terms of user
interaction needed, as the user is asked to mark just one
item.

3. Density-Based Shape Description Framework

Although the research on 3D shape descriptors for retrieval
started just a decade ago or so, there is a considerable
amount of work reported so far. The most up-to-date and
complete reviews in this rapidly evolving field are given
in [BKS∗05,TV04, IJL∗05]. The score fusion algorithm de-
scribed in the previous section can be used with any type
of shape descriptors. In the present work, we employ a rela-
tively recent 3D shape description methodology, the density-
based framework (DBF) [ASYS07a]. As we expose in this
section, DBF produces a rich set of descriptors, which has a
good retrieval performance compared to other state-of-the-
art methods.

In DBF, a shape descriptor consists of the sampled proba-
bility density function (pdf) of a local surface feature evalu-
ated on the surface of the 3D object. The sampling locations
of the pdf are calledtargetsand the pdf value at each target is
estimated using kernel density estimation. The vector of esti-
mated feature pdf values is a density-based shape descriptor.
In [ASYS07b], the discriminative power of several multi-
variate surface features within DBF has been investigated on
different databases. Three of these features are particularly
interesting as they capture local surface information up to
second-order:

• At zero-order, theR-feature(R, R̂) parametrizes the coor-
dinates of a surface point at a distanceR from the object’s
center of mass. The unit direction of the ray traced from
the center of mass to the point is denoted byR̂.

• At first-order, theT-feature(D, N̂) parametrizes the tan-
gent plane at a surface point. Here,D stands for the ab-

Table 1: Retrieval Performance of State-of-the-Art Descrip-
tors on PSB Test Set

NN (%) DCG (%)
DBI 66.5 66.3
REXT 60.2 60.1
R⊕T⊕S 67.4 65.0

solute normal distance of the tangent plane to the center
of mass and̂N is the unit normal at the point.

• At second-order, theS-feature(R,A,SI) carries categor-
ical local surface information through the shape index
SI [KvD92], which is enriched by the radial distanceR
and the alignmentA ,

∣∣〈R̂, N̂
〉∣∣.

Using DBF, these local features are summarized into
global shape descriptors that we denote asR-, T- and S-
descriptors. A simple way to benefit from different types of
shape information carried by these descriptors is to sum their
corresponding similarity valuessk, that is,ϕ1 = ∑k sk. The
retrieval performance of this basic score fusion, denoted as
R⊕T⊕S, on PSB test set (907 objects in 92 classes) is shown
in the third row of Table1 in terms of discounted cumulative
gain (DCG) and nearest neighbor (NN) measures. Note that
this fusion is unsupervised and does not involve any statisti-
cal learning.

In Table 1, we also display performance figures corre-
sponding to two state-of-the-art descriptors: depth buffer
images (DBI) [BKS∗05] and radialized extent function
(REXT) [Vra03]. DBI is a 2D image-based method, which
describes a shape by the low-frequency Fourier coefficients
of six depth buffer images captured from orthogonal par-
allel projections. REXT, on the other hand, relies on a
purely 3D idea by describing the shape as a collection of
spherical functions giving the maximal distance from cen-
ter of mass as a function of spherical angle and radius. DBI
among 2D methods and REXT among 3D methods are the
best performing descriptors on PSB test set in their own
methodological categories based on the results reported in
[BKS∗05] and [FS06] respectively. From Table1, we see
that (i) R⊕T⊕S is significantly better than REXT in terms
of both DCG and NN; (ii) its performance is comparable to
that of DBI.

Learning-based fusion of two or three scores does not
have enough degrees of freedom to boost the retrieval per-
formance significantly. We conjecture that we can reap the
benefits of statistical ranking upon employing a larger set
of descriptors produced by DBF. To prove our conjecture,
we decided to decompose the pdf of a feature into cross-
sections. Observe first that all of theR-,T- andS- descriptors
are radialized in the sense that they capture the distribution
of somesubfeatureat concentric shells with radiusrk (or dk
for theT-descriptor). The subfeatures are the radial direction
R̂ for theR-descriptor, the normal̂N for theT-descriptor and
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the(A,SI)-pair for theS-descriptor. We refer to these distrib-
utions ascross-sectionaldescriptors. For instance, let us take
theNR×NR̂ = 8×128= 1024-target pdf of theR-feature,
whereNR = 8 is the number of points sampled within the
R-domain andNR̂ = 128 is the number of points sampled on
the unit-sphere. The 1024-pointR-descriptor is then consid-
ered asNR = 8 chunks ofNR̂ = 128-point cross-sectional de-
scriptors, each of which can be used to evaluate a similarity
scoresk between two objects at a given concentric shell, say
at a distancerk from the origin. Of course, these individual
scores do not capture the shape similarity to the full extent.
However, this decoupling adds more degrees of freedom to
the subsequent score fusion stage, where we learn a distinct
weight wk for each of the individual scoressk by ranking
risk minimization. Accordingly, for each of theR-, T- and
S-descriptors, we obtain 8 per-chunk similarity scores and
work with 24 scores in total.

4. Experiments

We have tested our score fusion algorithm on a modified ver-
sion of PSB. Originally, PSB training and test sets do not
share the same shape classes. Accordingly, we have merged
these two sets into a single one, consisting of 1814 mod-
els in 161 classes. The number of classes shared by original
training and test sets is 21, hence the merged PSB contains
90+ 92− 21 = 161 classes. We have then split them into
two subsets A and B of sizes 946 and 868, drawing them
randomly from the same 161 classes. This reorganization of
the PSB database offers us an even more challenging prob-
lem since the number of classes is increased from 92 to 161.

4.1. Performance in the Bimodal Search

Recall that the bimodal search protocol assumes the exis-
tence of a training set categorized into a fixed set of con-
cepts. Learning is done off-line. In the bimodal experiments,
we have taken the PSB Set A as the training set, which we
have used to learn per-concept weight vectors. PSB Set B has
been reserved for testing purposes. In Table2, we provide
the results of fusing 8R-scores, 8T and 8S-scores, mak-
ing 24 scores in total. We also display the results of the basic
SUMrule for reference (i.e., that ofR⊕T⊕S). Although, the
learning-based score fusion does improve the average DCG
performance significantly on the training set, it does not lead
to a significant gain in the test set (only 2% using theAVE-W
heuristic). That is, learning-based score fusion does not work
well for certain concepts. This might be due to heuristics-
based learning of per-concept weight vectors, but, we think
that the following arguments better explain the situation:

• For some concepts, the linear similarity model might not
be flexible enough to maintain good classification accu-
racy in the score difference domain. When instances from
queries belonging to a certain concept are pooled together,
the discrimination problem in the score difference domain

Table 2: DCG (%) Performance of Score Fusion in the Bi-
modal Protocol

Rule PSB Set A PSB Set B
SUM 61.6±28.1 60.6±28.1

AVE-W 71.8±26.5 62.6±28.4
PCMIN-W 74.9±25.2 62.5±27.7

Table 3: DCG (%) Performance of Score Fusion in the
Bimodal Protocol when the basicSUM rule instead of
learning-based score fusion has been used for negatively af-
fected concepts

Rule PSB Set B # P.A. Concepts
SUM 60.6±28.1 -

AVE-W 64.0±24.1 106
PCMIN-W 64.4±23.9 100
P.A. Concepts: Positively Affected Concepts

might become more complex than what can be solved us-
ing a simple linear decision boundary. However, if the lin-
ear similarity model were totally unacceptable, we would
not expect a good performance on the training set either.
In fact, in only 4 out of 161 concepts in PSB Set A, the
AVE-Wfusion has worsened the performance by not more
than 2.3% DCG points with respect to the baselineSUM
rule. In PSB Set B, on the other hand, 61 concepts (again
out of 161) have suffered from an average performance
loss of 8.5% DCG points.

• In Table3, we provide the DCG scores when we use the
basic SUM rule instead of learning-based score fusion
(AVE-W or PCMIN-W) for negatively affected concepts
(i.e., those concepts for which learning-based score fu-
sion has worsened the DCG performance). The right most
columns give the number of positively affected concepts.
We deduce that the linear similarity model is adequate for
the training set and generalizes well on the previously un-
seen instances of∼100 concepts in the test set.

4.2. Performance in the Two-round Search

In the two-round query formulation, the benefits of the pro-
posed score fusion scheme become much more evident. To
evaluate the performance in this search protocol, we have re-
served the PSB Set A as the database shapes and PSB Set B
as the query shapes. The first round results have been ob-
tained by the basicSUM rule (i.e.,R⊕T⊕S).

In Figure5, we display the DCG performance of theon-
line sub-protocol as a function of the number ofmarked
itemsM from 4 to 32. In this figure, the line at the bottom
stands for the DCG of the first round (i.e., the performance
of theSUM rule, DCG =∼62%). The line at the top stands
for the DCG when all database models are marked as ei-
ther relevant or non-relevant, serving as an empirical ideal,

submitted toEurographics Workshop on 3D Object Retrieval (2008)



Submission ID: 1005 / Similarity Score Fusion for 3D Object Retrieval 7

Figure 5: DCG performance of the two-round search with
on-linelearning as a function of the number ofmarkeditems
M in the first round

Figure 6: DCG performance of the two-round search with
off-line learning as a function of the number ofdisplayed
items M in the first round

i.e., the maximum achievable DCG on this data set using the
presented score fusion algorithm and the running set of de-
scription schemes (DCG =∼79%). Based on these results,
we make the following comments:

• As the number of marked itemsM increases, we observe a
steep increase in the DCG performance, compatible with
theoretical fast rates of convergence proven in [CLV07].
The DCG profile converges smoothly to the empirical
ideal as the user marks more and more items in the first
round.

• To give certain performance figures, forM = 8, DCG ob-
tained after fusing the scores becomes∼68%, giving a 6%
improvement compared to the baseline. The 70% DCG
barrier is reached afterM = 12 marked items.

In Figure6, we display the DCG performance of theoff-
line sub-protocol as a function of the number ofdisplayed

Figure 7: Two-round search withon-line learning on ahu-
manquery

items M again 4 to 32. We emphasize that, in this mode,
M refers to the number ofdisplayeditems and the user in-
teraction needed is limited to mark just one shape, the first
relevant one after the first round. Accordingly, here,M is not
related to the convergence of the algorithm. IncreasingM
does not cost anything in terms of user interaction. After this
clarification, we have the following comments:

• At M = 1, score fusion boosts the retrieval performance
by ∼4% and the DCG profile keeps a slow but constant
increase as the number of displayed itemsM in the first
round is increased.

• In a typical retrieval scenario, displayingM = 32 items
has no cost. These results tell us that we can obtain DCG
improvements by∼5% with respect to the baseline. Not-
ing that the performances of top 3D shape descriptors dif-
fer only by a couple of percentage points, this 5% gain can
be considered as significant and comes virtually at no cost
at the querying process. The only bottleneck is the off-line
processing of the database shapes to learn the weight vec-
tors, which may eventually be used in the second round.

With on-line score fusion, we can obtain significant im-
provements as the user is asked to mark more and more
items. In special applications where the user voluntarily
marks the demanded number of items, the on-line scheme
is preferable. The off-line scheme, on the other hand, comes
at no cost at query time and still yields satisfactory improve-
ments. Sample two-round searches using these two variants
are shown in Figures7 and8.
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Figure 8: Two-round search withoff-line learning on a
benchquery

5. Conclusion

Several studies in the 3D domain pointed out the non-
existence of a single "miracle" 3D shape descriptor to pro-
vide adequate discrimination for retrieval [TV04,SMKF04].
In this work, motivated by the fact that different descrip-
tors may work well on different sets of shape classes, we
have addressed a relatively less studied problem in 3D ob-
ject retrieval: combining multiple shape similarities to boost
the retrieval performance. Our linear score fusion algorithm
based on ranking risk minimization proved to be effective on
ontology-driven bimodal query formulations and much more
on the two-round protocol which is a particular instance of
relevance feedback.

An immediate perspective for further research is to ex-
tend this general score fusion scheme to other type of shape
descriptors, notably to 2D image-based ones [BKS∗05]. Fur-
thermore, we may obtain performance improvements using
kernel methods [HTF01] to learn a non-linear scoring func-
tion. Direct minimization of per-concept risks, optimization
of DCG-based criteria and kernelization of the score fusion
algorithm will constitute our future research directions in
this field.
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