Mining MR Image Data by Discriminative Methods for the Diagnosis of Dementia

Ceyhun Burak Akgül
Former Marie Curie Postdoctoral Fellow @ Philips Research

www.cba-research.com
cb.akgul@gmail.com
Motivation – 1/2

Diagnose dementia (e.g., Alzheimer’s disease) from MR Images

Standard medical practice:
- patient history, collateral history from relatives
- clinical observations: neurological/neuropsychological features

BUT: does not often lead to an early diagnosis

An emerging trend: Exploit imaging data

HOW?
Brain Atrophy?

- requires longitudinal data: MR scans at different time stamps
- requires complex mathematical modeling and algorithms
- should quantify minute changes (that human eye can’t see)

Or something else...
Data Mining Framework

Representation
learn an image representation from data: analyze images
- at each location
- at several scales
- with several patterns

Selection
discover image features using labeled data

Classification
characterize patient groups discriminatively

Information Fusion
combine multiple (visual or non-visual) information sources
Data Mining Framework: Overview

Dataset (view, slice, labels)

Training Set (63 subjects)

PCA-based Image Description

Feature Ranking and Selection

Descriptors

SVM Model Selection

Model parameters

SVM Classifier Training

Descriptors

Feature Computation

Intensity templates

Feature indices

Classification

SVM decision values

Classifier model

Non-visual patient Information

Probabilistic Information Fusion

Image-based decisions

Combined decisions
(1) Image Representation

Training set

Training set

IMAGE SET

Support size w_s

Collect Patches

Basis vectors $B_s = \{b_{s,k}\}$

Image patches $(w_s \times w_s)$

PCA

XCORR

Feature Maps at scale w

$FM_{s,d'}$

$FM_{s,k}$

$FM_{s,1}$

Learning image patterns

- Basis vectors are common intensity patterns
- Use these patterns as templates
- Each window size induces a basis at a different scale
- Repeat the analysis by varying the window size
(2) Feature Selection by Ranking – 1/3

- Each image is described by $S \times K_s$ feature maps
- At each pixel location, there are $S \times K_s$ feature values
- Each feature \leftrightarrow a distinct (scale, template)-pair
- At each location:
 - rank the features based on their “usefulness”
 - pick the most “useful” feature for description

“Usefulness” \leftrightarrow Mutual information between feature and diagnostic label

$$MI(x,y) = \sum_{y \in \{-1, +1\}} \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$x \in [0,1]:$ normalized feature value at location (i,j)

$y \in \{-1, +1\}:$ diagnostic label of the image
(2) Feature Selection by Ranking – 2/3

Maximum Mutual Information Maps\(^(*)\) at Different Scales

Scale 1
\(w = 5\)

Scale 2
\(w = 11\)

Scale 3
\(w = 21\)

Scale 4
\(w = 31\)

Scale 5
\(w = 41\)

Maximum Mutual Information Map\(^(*)\) Combined over Scales

\(^(*)\) Map size: 87 ×70
(2) Feature Selection by Ranking – 3/3

- Each λ-value induces a subset of “surviving” locations
- Remember
 - Each location is associated with a (scale, basis)-pair whose feature value gives the maximum MI.

\rightarrow By varying λ, one obtains **nested subsets of features**

- **Or alternatively, retain top k features**
Amount of Data Processed: Some Facts

• 100 slices per subject ~ **400 Megabytes/subject**
• 121 subjects ~ **50 Gigabytes** TOTAL AMOUNT OF DATA PROCESSED

• 100 informative features/(subject×slice) selected as the descriptor
 < **1 kilobyte/(subject×slice)**
(3) Classification: SVM Basics

A non-linear SVM classifier F is indexed by two parameters (C,γ):

- The parameter C trades off training error vs. classifier complexity
- The kernel parameter γ determines the class of functions F and affects class separation
 (in some sense, it also determines the classifier complexity)

One has to specify the “best” (C,γ)-pair before testing the classifier.

A good empirical option

$$(C,\gamma)^* = \arg\min C V \text{Err}(F(C,\gamma))$$

Err_{CV}: Cross validation error
(3) Classification: Model Selection

- Leave-One-Out (LOO) cross-validation
- Initial search for the \((C,\gamma)\)-parameters on a coarse grid

\[\{(C,\gamma) \text{ such that } \text{ACC}>\text{THRESH}\} \]

- Search on a finer grid
- Further heuristics – Look at:
 - Sensitivity
 - Fraction of SVs (model parsimony)
 - Specificity
(4) Probabilistic Information Fusion

Bayesian Theory: The decision on the class label should be made on the conditional probability of the class label given all other relevant information.

\[
P(\text{label} \mid \text{info}) = P(\text{label} \mid \text{visual, non-visual})
\]

\[
P(\text{label} \mid \text{info}) \propto P(\text{label}) \times P(\text{visual, non-visual} \mid \text{label})
\]

\[
= P(\text{label}) \times P(\text{visual} \mid \text{label}) \times P(\text{non-visual} \mid \text{label})
\]

\[
\propto P(\text{label} \mid \text{visual}) \times P(\text{non-visual} \mid \text{label})
\]

derived from SVM outputs class-conditional distributions

estimated from training data
Experiments: Dataset

OASIS Dataset
121 Subjects

Training set
63 Subjects
16 AD (CDR=1)
47 Control (CDR=0)
• PCA-based feature learning
• Feature ranking and filtering
• Discriminative learning (SVM)
 - SVM model selection

Test set
58 Subjects
14 AD (CDR=1)
44 Control (CDR=0)
• Not seen during none of the training stages
• Reserved only for performance evaluation

• CDR: Clinical Dementia Rating: normal \(\rightarrow\) CDR = 0 moderate dementia \(\rightarrow\) CDR =1
• Stratified split keeps the class proportions the same in both sets (Control/AD \(\approx\) 3)
Experiments: MR Data

- 26 Axial + 46 Sagittal + 28 Coronal = 100 MR slices processed separately
- Each slice described by 100 informative image features
Experiments: Discriminative Slices – 1/2

Axial 6: Acc = 70.7%, Sens = 64.3%, Spec = 72.7%

Axial 10: Acc = 79.9%, Sens = 71.4%, Spec = 81.8%

Axial 12: Acc = 84.5%, Sens = 78.6%, Spec = 86.4%

Axial 15: Acc = 72.4%, Sens = 64.3%, Spec = 75.0%

Axial 26: Acc = 81.0%, Sens = 64.3%, Spec = 86.4%

Sagittal 26: Acc = 67.2%, Sens = 57.1%, Spec = 70.5%

Sagittal 32: Acc = 79.3%, Sens = 71.4%, Spec = 81.8%

Sagittal 33: Acc = 77.6%, Sens = 64.3%, Spec = 81.8%

Sagittal 35: Acc = 84.5%, Sens = 64.3%, Spec = 90.9%

Sagittal 37: Acc = 75.9%, Sens = 57.1%, Spec = 81.8%

Coronal 15: Acc = 65.5%, Sens = 57.1%, Spec = 68.2%

Coronal 25: Acc = 72.4%, Sens = 57.1%, Spec = 77.3%

Coronal 26: Acc = 81.0%, Sens = 57.1%, Spec = 88.6%
Experiments: Discriminative Slices – 2/2

Axial 12
Acc = 84.5%
Sens = 78.6%
Spec = 86.4%

Coronal 26
Acc = 81.0%
Sens = 57.1%
Spec = 88.6%

Sagittal 32
Acc = 79.3%
Sens = 71.4%
Spec = 81.8%

Axial 12 > Sagittal 32 > Coronal 26
Experiments: ROC vs. Descriptor Size

Area Under the Curve (AUC) vs Descriptor Size

<table>
<thead>
<tr>
<th>Descriptor Size</th>
<th>Accuracy (%)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial 12</td>
<td>100</td>
<td>84.5 (49/58)</td>
<td>84.1 (37/44)</td>
</tr>
<tr>
<td>Sagittal 32</td>
<td>160</td>
<td>65.5 (38/58)</td>
<td>65.9 (29/44)</td>
</tr>
<tr>
<td>Coronal 25</td>
<td>160</td>
<td>77.6 (45/58)</td>
<td>77.3 (34/44)</td>
</tr>
</tbody>
</table>

ROC: Receiver Operating Characteristic: TPR vs. FPR

AUC: Area under the ROC curve

EER: Equal error rate (sensitivity = specificity)
Experiments: Information Fusion – 1/2

SVM-only: Image-based decisions gleaned from SVM outputs

MMSE-only: MMSE-based decisions: *if MMSE<Thresh, then decide ill*

SVM+MMSE-OASIS: statistics estimated from OASIS training set (63 subjects)

SVM+MMSE-ADNI: statistics estimated from ADNI dataset (322 subjects)
Experiments: Information Fusion – 2/2

ROC Summary

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>EER (%)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM only</td>
<td>0.8260</td>
<td>15.3</td>
<td>84.5</td>
</tr>
<tr>
<td>MMSE only</td>
<td>0.9798</td>
<td>13.3</td>
<td>86.7</td>
</tr>
<tr>
<td>SVM+MMSE-OASIS</td>
<td>0.9798</td>
<td>8.7</td>
<td>91.3</td>
</tr>
<tr>
<td>SVM+MMSE-ADNI</td>
<td>0.9871</td>
<td>8.4</td>
<td>91.6</td>
</tr>
</tbody>
</table>

SVM+MMSE-ADNI > SVM+MMSE-OASIS > MMSE-only > SVM-only

- Information fusion is very useful indeed
- **Reliable statistics!!!** ADNI (322 subjects) > OASIS (63 subjects)
 - 229 controls
 - 93 positives
 - 47 controls
 - 16 positives
Summary

• Data-driven image representation
 – Unsupervised learning of local image patterns via PCA
 – Localized, at several scales, with several patterns

• Feature ranking and filtering
 – Supervised: based on MI between scalar features and class labels

• Discriminative learning
 – SVM model selection via cross-validation and further heuristics

• Information fusion
 – Leverage image-only decisions by non-visual information
 – Generic: works with any kind of meta-data as long as statistics available

Proof of concept:
A promising data-driven framework for the diagnosis of dementia with high predictive performance
What’s Next?

Practical
Go validate these results clinically
Do these slices, locations, scales, patterns make sense?
Acquire larger sets of labeled data
Allocate higher computational resources

Methodological
Other sparser image representations: ICA-based? NNMF-based?
Multivariate feature selection
Model selection: Don’t use one, average multiple models
Other classification schemes: AdaBoost

Theoretical ...
What’s Next? – *Theoretical*

Data → **Representations**
- **Features**
- **Classifiers**

? → Diagnosis

convolutional networks?
To conclude...

There’s nothing more practical than a good theory.

Lewin, 1952